透過您的圖書館登入
IP:3.143.17.128
  • 學位論文

設計1,8-口奈啶衍生物於水相中辨識鳥糞嘌呤及四股去氧核糖核酸之研究

Design of 1,8-Naphthyridine Derivatives for Molecular Recognition of Guanine and Quadruplex DNA in Water

指導教授 : 方俊民

摘要


本論文主要分為兩部份,分別是乙炔連接之1,8-口奈啶–苯胺共軛分子與鳥糞嘌呤單磷酸鹽於水相之分子辨識研究以及水溶性四股DNA 受體分子的設計與合成。 在第一部分主要對於生物界中的重要受質鳥糞嘌呤設計合成出具多重氫鍵結合的受體:乙炔連接之1,8-口奈啶–苯胺共軛分子Sa-APENA(1)、Diol-APENA(2)、Ol-APENA(3)和Am-APENA(4),並對於其光物理性質、結合能力的評估以及相關研究加以討論。化合物Sa-APENA 和Am-APENA 對於嘌呤類的鳥糞嘌呤衍生物(G-10),皆具有選擇性的辨識作用,結合後造成螢光淬熄。鳥糞嘌呤衍生物(G-10)可與Sa-APENA 與Am-APENA 在二氯甲烷溶液中產生結合,經計算得知結合常數相當高(4.12 × 105 與2.33 × 105 M–1),而腺嘌呤衍生物A-10 與這些受體結合微弱且造成螢光增強。較化合物4 少一個乙醯基的化合物22,對於G-10 及A-10 完全沒有分辨效果,顯然口奈啶2 號氨基上的乙醯基團對於分辨嘌呤類化合物相當重要。在口奈啶衍生物方面,衍生出芘基團的化合物44 可利用π–π 吸引力增加與鳥糞嘌呤的結合常數(在二氯甲烷溶液中為1,443,900 M–1)。以點擊化學連接、無預先組織的口奈啶二聚體化合物55 與鳥糞嘌呤的結合常數相對較低(在二氯甲烷溶液中為185,500 M–1),而預先組織的口奈啶二聚體化合物53 可大幅增加與鳥糞嘌呤的結合常數(在二氯甲烷溶液中為1,809,700 M–1),此高效率螢光感測器將有助於生物有機相關研究之應用。 在本論文第二部分我們合成出水溶性口奈啶類化合物64 及以連續共軛芳香環為中心,且帶有可與鋅離子結合的di(2-pyridylmethyl)amine(DPA)基團的化合物65、66 與67。化合物64 可選擇性的與逆平行鳥糞嘌呤四股結構H24 結合,在吸收光譜上呈現吸收度下降及紅位移的現象,而在螢光光譜上明顯的紅位移了68 nm,根據CD 光譜可知結合前後並沒有改變鳥糞嘌呤四股結構的纏繞方式,而根據解旋溫度可知化合物64 的確可穩定鳥糞嘌呤四股結構,使解旋溫度從53.2 oC 上升至64.2 oC。而帶有雙臂DPA–Zn 基團的化合物65 可使解旋溫度上升至62.0 oC,顯然與鋅離子配位的DPA 基團的確可以穩定鳥糞嘌呤四股結構,經由膠體電泳分析可知化合物65 對於H24 具有相當好的選擇性。

並列摘要


This thesis consists of two parts. The first part is molecular recognition of guanosine phosphates by ethynyl-linked aniline-naphthyridine conjugated molecules in water; the second part is to design and synthesize water-soluble receptors for binding with quadruplex DNA. In the first part, the ethynyl-linked aniline-naphthyridene molecules (Sa-APENA、Diol-APENA、Ol-APENA and Am-APENA) were synthesized and used as the hydrogen-bonding receptors of a biologically important substrate Guanine. We investigated their photophysical properties and binding affinity. The receptors Sa-APENA and Am-APENA showed good and selective binding affinity for guanine derivative G-10. The binding caused fluorescence quench. The binding affinity is very high, Ka = 412,300 and 233,200 M–1 for Sa-APENA and Am-APENA, respectively, in CH2Cl2 solution. Compared with compound 4, compound 22 lacked for acetyl group is totally lose the selectivity between G-10 and A-10. It was quite obvious that the acetyl on 2-aminonaphthyridine is very important for distinguish purine derivatives. These molecules bind A-10 weakly, and the binding caused enhanced fluorescence. Compound 44, a naphthyridine derivative containing a pyrene moiety increased the binding affinity, Ka = 1,443,900 M–1 with guanine derivative G-10 through an additional π–π interaction. The naphthyridine dimer 55 with triazole linkers prepared by click chemistry was not preorganized, so that the binding affinity with guanine derivative G-10 was low, Ka = 185,500 M–1 in CH2Cl2 solution. On the other hand, the preorganized naphthyridine dimer 53 bound strongly to guanine derivative G-10, Ka = 1,809,700 M–1 in CH2Cl2 solution. These efficient fluorescent chemosensors are potentially useful in bioorganic researches. In the second part, the water soluble naphthyridine derivative 64 and conjugated aromatic compounds 65, 66 and 67, which bear two di(2-pyridylmethyl)amine–Zn (DPA–Zn) functional groups, were synthesized. Compound 64 binds the anti-parallel quadruplex H24 selectively. The absorption showed a red shift from 372 nm to 392 nm with decreased absorbance. The fluorescence was also bathochromic by 68 nm. The binding did not change the quadruplex structure according to the CD spectrum. Compound 64 stabilized quadruplex structure and increased the melting temperature from 53.2 oC to 64.2 oC. Compound 65 bearing two DPA–Zn also stabilized quadruplex structure and increased the melting temperature to 62.0 oC. According to the polyacrylamide gel electrophoresis, compound 65 binds H24 in a high selectivity.

並列關鍵字

Naphthyridine Guanine Quadruplex DNA

參考文獻


184. Holley, J. L.; Mather, A.; Wheelhouse, R. T.; Cullis, P. M.; Hartley, J. A.; Bingham, J. P.; Cohen, G. M. Cancer Res. 1992, 52, 4190–4195. Targeting of tumor cells and DNA by a chlorambucil–spermidine conjugate.
101. Feng, J. L.; Funk, W. D.; Wang, S.-S.; Weinrich, S. L.; Avilion, A. A.; Chiu, C.-P.; Adams, R. R.; Chang, E.; Allsopp, R. C.; Yu, J. H.; Le, S. Y.; West, M. D.; Harley, C. B.; Andrews, W. H.; Greider, C. W.; Villeponteau, B. Science 1995, 296, 1236–1241. The RNA component of human telomerase.
1. Pederson, C. J. J. Am. Chem. Soc. 1967, 89, 7017–7036. Cyclic polyethers and their complexes with metal salts.
2. de Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord. Chem. Rev. 2000, 205, 41–57. Combining luminescence, coordination and electron transfer for signalling purposes.
3. Schmidtchen, F. P.; Berger M. Chem. Rev. 1997, 97, 1609–1646. Artificial organic host molecules for anions.

延伸閱讀