透過您的圖書館登入
IP:3.139.97.157
  • 學位論文

太陽能光敏化染料電池之染料在二氧化鈦表面上的理論計算研究與其相關性質的探討

Theoretical Study of Dyes Anchoring onto the TiO2 Surface in DSCs and Their Relevant Properties

指導教授 : 周必泰
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著人類對石油和天然氣的使用殆盡,尋找替代性能源是現今學界首要的研究工作,利用太陽光來發電是研究的領域之一,其中以太陽能光敏化敏料電池(Dye-Sensitized Solar Cells, DSCs)具有低成本、容易操作的優點。目前最高的光致電轉換效率為12%,如何提升DSCs的光致電轉換效率是學界急需突破的瓶 頸。 在DSCs的元件中,染料吸收太陽的可見光及紅外光,染料的電子從染料的基態躍遷到激發態,接著電子再注入到二氧化鈦表面上,電子在二氧化鈦內傳遞,經由外電路,再得到人類日常生活所需要的電能。 染料在二氧化鈦表面上的介面行為是非常複雜的,如何利用理論計算的方法來得知此介面行為的機制是我們的研究主題。我們利用軟體Gaussian 09模擬以重金屬Ru和Os為中心金屬的三配位基染料,此兩類染料可以吸收紅外光,有10%左右的光致電轉換效率,在長時間元件的使用期間裡具有良好的穩定性。我們經由理論計算的吸收光譜跟實驗得到的吸收光譜作比較,發現有良好的可信度,另外我們可以得到各個軌域的電子分布,進而對染料在二氧化鈦表面上的介面行為有更深入的瞭解,進而提升DSCs的光致電轉換效率。 在染料的設計方面,我們可以從太陽光的組成來探討,太陽光的組成為紫外線,可見光,紅外光,其中紅外光佔了一半,如何讓染料可以吸收更多的紅外光,是目前學界想要解決的難題之一。我們可以經由理論計算的計算,來預測未知染料的光電性質,進而節省實驗合成的繁瑣程序。 本篇論文分為兩個章節來討論,在第一章裡,我們用Ru(II)為中心金屬的三配位基染料N749,N749分別帶有0,1,2,3個羧酸根的質子,模擬它們在二氧化鈦表面上光電轉換現象,共有七種模型,我們的計算結果與實驗相符,因此我們的計算方法是可以被認可的。 接著,在第二章裡,我們計算了以Os(II)為中心金屬的兩個三配位基染料,分別為TF-51-Os和TF-52-Os,以及以Ru(II)為中心金屬的兩個三配位基染料,分別為TF-51-Ru和TF-52-Ru,總共四個染料。TF-51-Os和TF-51-Ru具有相同的分子結構,而且TF-52-Os和TF-52-Ru也具有相同的分子結構。這四個染料在做成 DSCs元件時,都可以吸收紅外光,而且Os(II)染料比Ru(II)染料可以吸收更多的紅外光,而我們的理論計算結果也顯示一樣的趨勢,因此我們可以更深入瞭解以 Os(II)與Ru(II)為中心金屬的染料不同之處。 在未來的工作裡,我們可以計算更多不同的染料在二氧化鈦的光電性質,進而對染料在二氧化鈦表面上的介面現象有更深層的認識,也是本篇論文的最大目標。

並列摘要


Chapter I: Theoretical Study of N749 Dyes Anchoring on the (TiO2)28 Surface in DSCs and Their Electronic Absorption Properties In chapter I, we have performed calculations on the panchromatic N749 dyes adsorbed on the (TiO2)28 surface. N749 is a prototypical form of Ru(II) complexes for dye sensitized solar cells (DSCs), which possesses a terpyridine tridentate ligand bearing four different protonation states (0, 1, 2, or 3 carboxylic protons). Depending on the type of proton bonding interaction (protonated and deprotonated), seven N749/(TiO2)28 surface models (N749-0H/(TiO2)28, N749-1H-P/(TiO2)28, N749-1H-DP/(TiO2)28, N749-2H-P/(TiO2)28, N749-2H-DP/(TiO2)28, N749-3H-P/(TiO2)28, and N749-3H-DP/(TiO2)28) have been applied in this study for the geometry optimization, frontier molecular orbital level diagrams, and calculated absorption spectra. The moderate surface area of (TiO2)28 cluster is suitable for N749 dyes adsorbing behaviors so that all calculations can be performed using the Gaussian 09 program package. We have carefully examined these seven N749/(TiO2)28 assemblies that could influence the DSCs device performance. The calculated absorption spectra of these seven various N749/(TiO2)28 models are in good agreement with the experimental results by Hagfeldt et al. [J. Phys. Chem. B, 2002, 106, 12693–12704] with onset ranging from visible to near-IR region. The combination of the adsorption energy onto TiO2 and calculated absorption spectra (c.f. the experimental results) concludes that the deprotonated dyes constitute the most favorable and dominant structure in the DSCs devices. The frontier molecular orbital graphs indicate that the electron charge distribution of all HOMOs are located at the N749 dyes while LUMOs are localized at the (TiO2)28 surface or delocalized at the interfacial regions of N749/(TiO2)28. The corresponding transitions are thus more like a type of optical electron transfer, injecting the electron to the interfacial TiO2. Chapter II: Tridentate Terpyridine Os(II)– and Ru(II)–Based Dyes Anchoring on the (TiO2)38 Surface in DSCs – A Theoretical Study In Chapter II, in the past decade, Os(II)–based panchromatic dye sensitized solar cells (DSCs) are an alternatively accessible choice to replacing the traditional heavy metal Ru(II)–based dyes. In 2012, we reported two synthesized Os(II)–based dyes with photo-current conversion efficiency reaching 8.85% in our experimental research. In this theoretical study, we performed the simulation regarding two Os(II)– (TF-51-Os and TF-52-Os) and two Ru(II)–based (TF-51-Ru and TF-52-Ru) dyes anchoring onto the anatase (101) (TiO2)38 surface. In total, we simulated four dye/(TiO2)38 surface models. Based on the same structures (TF-51-Os vs. TF-51-Ru and TF-52-Os vs. TF-52-Ru), we could make a comparative study relating the Os(II)– and Ru(II)–based dyes in DSCs. By the way, we also quantitatively estimated the electronic coupling between the dye and (TiO2)38 interfacial interaction using the Generalized Mulliken–Hush (GMH) theory with configuration–interaction singles (CIS) method. This article is the first report theoretically studying about the Os(II)–based dye in DSCs, and we believe that it could open a new doorway in the heavy metal based dye/TiO2 research field.

參考文獻


Lee, G.. H.; Lin, C. L.; Chou, P. T. Angew. Chem., Int.
23. Yang, S. H.; Wu, K. L.; Chi, Y.; Cheng, Y. M.; Chou, P.
H.; Lai, C. H.; Chou, P. T.; Chi, Y.; Lee, G. H. Chem.
L.; Palomares, E.; Cheng, Y. M.; Pan, H. A.; Chou, P. T.
43. Chou, P. T.; Chi, Y.; Chung, M. W.; Lin, C. C. Coord.

延伸閱讀