Title

重金屬對於狼尾草生質物生產纖維酒精之影響

Translated Titles

Effect of heavy metal ions in bioethanol production from Pennisetum purpureum

Authors

俞帆純

Key Words

狼尾草 ; 重金屬 ; 蒸氣爆碎 ; 純糖發酵 ; 重金屬吸附 ; 酵素水解 ; Pennisetum purpureum ; napier grass ; heavy metal ions ; steam explosion ; adsorption ; enzyme hydrolysis

PublicationName

臺灣大學森林環境暨資源學研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

柯淳涵

Content Language

英文

Chinese Abstract

本研究為利用狼尾草作為試材,本實驗分為三部分進行:(1)重金屬對於純糖發酵之影響、(2)重金屬對於狼尾草生質物之吸附及(3)含重金屬之生質物對於酵素水解的影響。第一部分是探討含重金屬之葡萄糖液,對其發酵之影響。反應條件為於37度水浴槽中,以轉速100�每分鐘去做72小時之搖瓶試驗。當添加微量重金屬時,有提高發酵產率的現象發生;一旦超過一定濃度則會明顯抑制發酵反應。第二部分生質物之前處理方法為將10公分長之試材浸泡於1.5 %硫酸中96小時,接著放入蒸氣槽後通入蒸氣,處理條件為180oC下持溫10分鐘。再將蒸爆漿進行重金屬吸附試驗,試材濃度為5克�100毫升,對不同含量之重金屬於37oC環境下進行水浴搖瓶48小時,最後利用火焰式原子吸收光譜儀測得吸附情況。由結果發現,當反應至36小時,吸附量會達到一平衡狀態,繼續搖瓶反應則不會有顯著的改變;第三部分為含有重金屬之漿料對於酵素水解影響之試驗,材料濃度為 5克�100毫升,並利用cellulase、β-glucosidase以及xylanase等酵素於37oC的環境下進行48小時水解反應,而酵素添加量比例為:4毫升酵素�100克絕乾重、12毫升酵素�100克絕乾重與24毫升酵素�100克絕乾重,最後利用HPLC測得葡萄糖含量。最後結果測得,在含重金屬鋅(Zn2+)濃度為836毫克�公升的情況下,其產率為145.92毫克�克絕乾重;而另一方面,在鉻(Cr6+)濃度為9.61毫克�公升的情況下有最高的產率864.04毫克�克絕乾重。由本試驗結果可得知,利用植生復育於重金屬污染土壤,其種植生質能源作物之可行性,亦可作為未來實際應用在污染地做試驗之參考依據。

English Abstract

Napier grass is one of the plants with high yield of full lignocellulose. This study used acid steam-exploded napier grass pulp to conduct assays. It was divided into three portion: (i) inhibition degree of glucose fermentation with heavy metal ions, (ii) adsorption of heavy metal ions on napier grass biomass and (iii) effect of heavy metal ions in enzyme hydrolysis process. First, in glucose fermentation, all heavy metal ions in trace amount was promoted bioethanol production, but when dosing overdosage of metal ions, the yield was decreased rapidly and inhibited ethanol production. Second, in part of adsorption, the equilibrium for adsorption of heavy metal ions was occurred after 36 h. After this equilibrium point, the amounts of adsorbed ions did not significantly change with time. Finally, for the saccharification of pretreated napier grass biomass, cellulase formulations were applied with three dosages: 4, 12, 24 percent to dried pulp (v/w). The flasks were water bathed at 37°C, shaken at 100 rpm for 48 h, and the samples were analyzed with HPLC. The optimal yield occurred in 24 mL/100 g DS and dosing the least concentration of Cr6+ (9.61 mg/L) for 864.04 mg/g. This study demonstrated the potential of phytoremediation in polluted places with heavy metal ions.

Topic Category 生物資源暨農學院 > 森林環境暨資源學研究所
生物農學 > 森林
生物農學 > 生物環境與多樣性
Reference
  1. Akrida‐Demertzi, K., Demertzis, P. G., & Koutinas, A. A. (1988). pH and trace‐elements content in raisin extract industrial‐scale alcoholic fermentation. Biotechnology and bioengineering, 31(7), 666-669.
    連結:
  2. Aristidou, A., & Penttilä, M. (2000). Metabolic engineering applications to renewable resource utilization. Current Opinion in Biotechnology, 11(2), 187-198.
    連結:
  3. Ballesteros, M., Oliva, J. M., Negro, M. J., Manzanares, P., & Ballesteros, I. (2004). Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry, 39(12), 1843-1848.
    連結:
  4. Cantarella, M., Cantarella, L., Gallifuoco, A., Spera, A., & Alfani, F. (2004). Effect of Inhibitors Released during Steam‐Explosion Treatment of Poplar Wood on Subsequent Enzymatic Hydrolysis and SSF. Biotechnology progress, 20(1), 200-206.
    連結:
  5. Cara, C., Ruiz, E., Ballesteros, M., Manzanares, P., Negro, M. J., & Castro, E. (2008). Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel, 87(6), 692-700.
    連結:
  6. Cooney, J. J., & Wuertz, S. (1989). Toxic effects of tin compounds on microorganisms. Journal of industrial Microbiology, 4(5), 375-402.
    連結:
  7. de Carvalho Lima, K. G., Takahashi, C. M., & Alterthum, F. (2002). Ethanol production from corn cob hydrolysates by Escherichia coli KO11. Journal of Industrial Microbiology and Biotechnology, 29(3), 124-128.
    連結:
  8. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., & Penner, M. H. (1997). Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresource Technology, 59(2), 129-136.
    連結:
  9. Ge, L., Wang, P., & Mou, H. (2011). Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renewable energy, 36(1), 84-89.
    連結:
  10. Henderson, G. E., Evans, I. H., & Bruce, I. J. (1989). Vanadate inhibition of mitochondrial respiration and H+ ATPase activity in Saccharomyces cerevisiae. Yeast, 5(1), 73-77.
    連結:
  11. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource technology, 100(1), 10-18.
    連結:
  12. Hoogwijk, M., Faaij, A., van den Broek, R., Berndes, G., Gielen, D., & Turkenburg, W. (2003). Exploration of the ranges of the global potential of biomass for energy. Biomass and bioenergy, 25(2), 119-133.
    連結:
  13. Husain, Z., Zainac, Z., & Abdullah, Z. (2002). Briquetting of palm fiber and shell from the processing of palm nuts to palm oil. Biomass and Bioenergy, 22(6), 505-509.
    連結:
  14. Ingram, L. O., Ohta, K., & Wood, B. E. (1998). U.S. Patent No. 5,821,093. Washington, DC: U.S. Patent and Trademark Office.
    連結:
  15. International Energy Agency. (2004). Biofuels for transport: an international perspective. International Energy Agency, OECD.
    連結:
  16. Jeffries, T. W., & Jin, Y. S. (2000). Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Advances in applied microbiology, 47, 221-268.
    連結:
  17. Kerr, R. A. (1998). The next oil crisis looms large and perhaps close. Science, 281(5380), 1128-1131.
    連結:
  18. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., & Nilvebrant, N. O. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology, 24(3), 151-159.
    連結:
  19. Lau, M. W., Gunawan, C., Balan, V., & Dale, B. E. (2010). Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A (LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnology for biofuels, 3(1), 11.
    連結:
  20. Laureano-Perez, L., Teymouri, F., Alizadeh, H., & Dale, B. E. (2005). Understanding factors that limit enzymatic hydrolysis of biomass. Applied Biochemistry and Biotechnology, 124(1-3), 1081-1099.
    連結:
  21. Li, X., & Kim, T. H. (2012). Bioconversion of corn stover derived pentose and hexose to ethanol using cascade simultaneous saccharification and fermentation (CSSF). Bioprocess and biosystems engineering, 35(1-2), 99-104.
    連結:
  22. Lynd, L. R. (1996). Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annual review of energy and the environment, 21(1), 403-465.
    連結:
  23. Martin, C., Alriksson, B., Sjöde, A., Nilvebrant, N. O., & Jönsson, L. J. (2007). Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Applied biochemistry and biotechnology, 137(1-12), 339-352.
    連結:
  24. McMillan, J. D. (1994). Pretreatment of lignocellulosic biomass. In ACS symposium series (USA).
    連結:
  25. Mes-Hartree, M., & Saddler, J. N. (1983). The nature of inhibitory materials present in pretreated lignocellulosic substrates which inhibit the enzymatic hydrolysis of cellulose. Biotechnology Letters, 5(8), 531-536.
    連結:
  26. Norris, P. R., & Kelly, D. P. (1977). Accumulation of cadmium and cobalt by Saccharomyces cerevisiae. Journal of General Microbiology, 99(2), 317-324.
    連結:
  27. Okuda, N., Ninomiya, K., Takao, M., Katakura, Y., & Shioya, S. (2007). Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11. Journal of bioscience and bioengineering, 103(4), 350-357.
    連結:
  28. Olsson, L., & Hahn-Hägerdal, B. (1993). Fermentative performance of bacteria and yeasts in lignocellulose hydrolysates. Process Biochemistry, 28(4), 249-257.
    連結:
  29. Pons, M. N., & Chanel, S. (1991). Effect of heavy metals on volatiles production in alcoholic fermentation by Saccharomyces cerevisiae. Journal of fermentation and bioengineering, 72(1), 61-63.
    連結:
  30. Pons, M. N., Pichon, D., & Authier, M. (1989). Monitoring of alcoholic fermentations of fruit juices via a gas membrane sensor. Journal of fermentation and bioengineering, 68(4), 282-285.
    連結:
  31. Ross, I. S. (1977). Effect of glucose on copper uptake and toxicity in Saccharomyces cerevisiae. Transactions of the British Mycological Society, 69(1), 77-81.
    連結:
  32. Ruiz, E., Cara, C., Manzanares, P., Ballesteros, M., & Castro, E. (2008). Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzyme and microbial technology, 42(2), 160-166.
    連結:
  33. Sassner, P., Galbe, M., & Zacchi, G. (2006). Bioethanol production based on simultaneous saccharification and fermentation of steam-pretreated Salix at high dry-matter content. Enzyme and Microbial Technology, 39(4), 756-762.
    連結:
  34. Sassner, P., Mårtensson, C. G., Galbe, M., & Zacchi, G. (2008). Steam pretreatment of H2SO4-impregnated Salix for the production of bioethanol. Bioresource Technology, 99(1), 137-145.
    連結:
  35. Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., & Hankamer, B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy research, 1(1), 20-43.
    連結:
  36. Söderström, J., Galbe, M., & Zacchi, G. (2005). Separate versus Simultaneous Saccharification and Fermentation of Two‐Step Steam Pretreated Softwood for Ethanol Production. Journal of wood chemistry and technology, 25(3), 187-202.
    連結:
  37. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 83(1), 1-11.
    連結:
  38. Sun, Y., & Cheng, J. J. (2005). Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource technology, 96(14), 1599-1606.
    連結:
  39. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme and microbial technology,28(9), 835-844.
    連結:
  40. Van den Broek, R. (2000). Sustainability of biomass electricity systems. An assessment of costs, macro-economic and environmental impacts in Nicaragua, Ireland and the Netherlands.
    連結:
  41. Wheals, A. E., Basso, L. C., Alves, D. M., & Amorim, H. V. (1999). Fuel ethanol after 25 years. Trends in biotechnology, 17(12), 482-487.
    連結:
  42. Wyman, C. E., Spindler, D. D., & Grohmann, K. (1992). Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass and Bioenergy, 3(5), 301-307.
    連結:
  43. Yanagisawa, M., Nakamura, K., Ariga, O., & Nakasaki, K. (2011). Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochemistry, 46(11), 2111-2116.
    連結:
  44. Yasuda, M., Miura, A., Shiragami, T., Matsumoto, J., Kamei, I., Ishii, Y., & Ohta, K. (2012). Ethanol production from non-pretreated napier grass through a simultaneous saccharification and fermentation process followed by a pentose fermentation with Escherichia coli KO11. Journal of bioscience and bioengineering, 114(2), 188-192.
    連結:
  45. Zaldivar, J., & Ingram, L. O. (1999). Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnology and bioengineering, 66(4), 203-210.
    連結:
  46. Zaldivar, J., Martinez, A., & Ingram, L. O. (1999). Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering, 65(1), 24-33.
    連結:
  47. Zaldivar, J., Martinez, A., & Ingram, L. O. (2000). Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering, 68(5), 524-530.
    連結:
  48. Zaldivar, J., Nielsen, J., & Olsson, L. (2001). Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Applied microbiology and biotechnology, 56(1-2), 17-34.
    連結:
  49. Dowe, N., & McMillan, J. (2001). SSF experimental protocols: lignocellulosic biomass hydrolysis and fermentation. National Renewable Energy Laboratory (NREL) Analytical Procedures.
  50. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., & Ingram, L. O. (1991). Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Applied and Environmental Microbiology, 57(4), 893-900.
  51. Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30(5), 279-291.
  52. Takagi, M., Abe, S., Suzuki, S., Emert, G., & Yata, N. (1977, February). A method for production of alcohol directly from cellulose using cellulase and yeast. In Bioconversion Symposium; New Dehli, India (pp. 551-571).