Title

利用氧化鋅奈米柱發光二極體發展腫瘤偵測技術

Translated Titles

Tumor detection for cancers by using ZnO light emitting nanorods

DOI

10.6342/NTU.2011.00260

Authors

楊勝傑

Key Words

氧化鋅奈米柱 ; 奈米柱 ; EGFR antibody ; 癌症細胞 ; ZnO nanorod ; nanorod ; EGFR antibody ; cancer cell

PublicationName

臺灣大學光電工程學研究所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

黃建璋

Content Language

英文

Chinese Abstract

近年來由於氧化鋅獨特的光學特性,氧化鋅奈米結構得到高度的重視,包括在室溫下3.37 eV的高能隙和60 meV的激子束縛能(exciton binding energy)。而在眾多的奈米結構中,一維氧化鋅奈米柱更是被廣泛的使用在不同的應用領域之中,如短波長發光二極體(light emitters),場發射器(field emitters),發光元件,紫外光雷射以及太陽能電池。 而在眾多的應用領域中,一維氧化鋅奈米柱在生醫科技中更是相當具有潛力的一種材料。由於一維氧化鋅奈米柱在各種生物分子中有著相當穩定的性質,不容易與生物分子產生化學作用,以及相當高的生物相容性,這都使得一維氧化鋅奈米柱成為當今的熱門研究材料。除此之外,一維氧化鋅奈米柱可以藉由各種成長方式來製備,包含金屬有機化學氣相沉積(MOCVD)、脈衝雷射蒸鍍技術(pulse laser deposition)以及射頻磁控濺鍍(RF magnetron sputtering)等。而在本篇論文當中,我們則利用水熱法的方式將一維氧化鋅奈米柱成長於藍寶石基板和矽基板。 本文提出了具高光指向性之紫外光氧化鋅奈米柱發光二極體。藉由低溫的水熱法成長氧化鋅奈米柱於p型氮化鎵上,並在其介面加入一氧化鎂電子阻擋層,透過此結構之設計,電子能夠有效的被阻擋於氧化鋅側並與電洞結合,成功做出具有398nm近紫外光波段放光之奈米柱發光二極體。同時更進一步量測奈米柱在低溫之下之電激發光光譜,並對元件發光強度隨溫度下降而減弱以及波長峰值隨溫度變化而藍移之效應提出載子穿隧模型與溫度對能隙關係加以解釋。 接著,我們利用氧化鋅奈米柱獨特的發光性質應用在癌症細胞的偵測。在現今的癌症偵測技術中,螢光染色法是最為普遍的其中一種檢測法。然而,螢光染色法存在許多的缺點,例如螢光衰退、螢光顯色的限制與細胞自體螢光分辨上的困難,這些都使得在手術過程中難以達成癌症細胞的即時檢測。 有許多團隊利用量子點並藉由表面改質的方式來解決這些困難,然而量子點在製備以及表面改質都的過程不僅會改變本半導體特姓,並且製程昂貴。為了克服這些困難,我們利用半導體光源來替代有機螢光物質。藉著利用氧化鋅奈米柱作為細胞標記,將氧化鋅奈米柱接合上抗體之後,用此標記接合上癌症細胞。我們先行利用IgG 抗體作為對照測試,在不同的條件以及抗體濃度下完成氧化鋅奈米柱與IgG抗體之接合,並藉由間接染色法來確認抗體的連結特性,並且發現氧化鋅奈米柱對抗體之特殊接合能力。由於氧化鋅奈米柱有很高的親和力(Affinity),並且更大的表面積對體積之比值可以提供更多的抗體接合位,故抗體與之有相當強的接合力。在確認氧化鋅奈米柱與IgG抗體的接合能力後,我們便使用EGFR (epidermal growth factor receptor) antibody 取代IgG抗體,EGFR antibody是近年來研究癌症細胞的重要議題,多數的癌症細胞對EGFR有很高的表現,因此利用EGFR antibody 可以容易的對癌症細胞做檢測。藉由結合EGFR antibody 的氧化鋅奈米柱作為癌細胞偵測標記,當此標記自動結合癌細胞上的EGF receptor,我們再利用氧化鋅的光學性質特性來檢測帶有此標記的癌症細胞,藉以達成高偵測性的癌症檢測。

English Abstract

ZnO nanostructures have received great attention due to their desirable optical properties, which include a wide bandgap of 3.37 eV and a large exciton binding energy of 60 meV at room temperature. 1-D ZnO nanorod has been previously demonstrated as a candidate material for use in a broad range of technological applications, such as short-wavelength light emitters, field emitters, luminescence devices, UV lasers, and solar cells. 1-D ZnO nanorod also has very good potential for aiding optical detection of target bioconstituents, as ZnO nanomaterials are stable in typical biomolecular detection environments, have attractive optical properties, and can be easily processed. There are numerous vapor-phase methods for the growth of ZnO nanorods such as metal organic chemical vapor deposition, pulse laser deposition, radio frequency magnetron sputtering and deposition within anodized aluminum oxide membrane. In this study, we used hydrothermal method to grow nanorods on sapphire and Si substrates. Then we demonstrate ZnO nanorod/p-GaN LEDs fabricated using hydrothermal method for the single crystal ZnO nanorod arrays growth. MgO blocking layer between ZnO nanorod and p-GaN are inserted to enhance the UV emission from ZnO nanowires. After that, we utilized the special optical properties of ZnO nanorod for tumor detection. Generally, to visually observe cancer cells, fluorescence cancer detection is one of the most common methods. However, there are many disadvantages for fluorescence cancer detection such as the phototoxicity, the limited number of available fluorescent channels, and the overlap of the excitation and emission spectra of the stains. Furthermore, under a constant light illumination, it possesses the issue of photobleaching, making real time surgery difficult. Many groups has reported that QDs can conquer these problems, however, the QDs method requires surface modification and the surface state induced by modification changes the property of semiconductor material. Moreover, all the processes cost high. To overcome these issues, the semiconductor light sources are alternative choices. In this work, ZnO nanorods are proposed as biomarkers. The ZnO nanorods were synthesized and bonded to antibodies. In the beginning, we conduct the IgG binding to ZnO nanorods for different concentration. The binding ability was verified by indirect fluorescence method. IgG was then replaced by EGFR (epidermal growth factor receptor) antibody. In previous studies, many types of cancer cells have greatly express in EGFR. Therefore, the biomarker made from binding the EGFR antibody to ZnO nanorods can easily mark the targeted cancer cells. By measuring optical properties of the biomarker, the detection of cancer cells will be monitored and analyzed.

Topic Category 電機資訊學院 > 光電工程學研究所
工程學 > 電機工程
Reference
  1. [3] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan. (2003). Advanced materials. doi:10.1002/adma.200390087
    連結:
  2. [4] Lars; Hedstrom, Jonas; Kessler, John; Ruckh, Martin; Velthaus, Karl‐Otto; Schock, Hans‐Werner. (1993). Applied Physics Letters, 62(6), 597-599. doi: 10.1063/1.108867.
    連結:
  3. [6] Lifeng Dong, Jun Jiao, David W. Tuggle, Jeremy M. Petty, Stephen A. Elliff, Michael Coulter. (2003). Appl Phys Lett, 82, 1096. doi:10.1063/1.1554477.
    連結:
  4. [7] S. H. Jo, D. Banerjee, Z. F. Ren. (2004). Appl Phys Lett, 85, 1407. doi:10.1063/1.1784543.
    連結:
  5. [8] Heon Ham, Guozhen Shen, Jung Hee Cho, Tae Jae Lee, Sung Ho Seo, Cheol Jin Lee. (2005). Chemical Physics Letters. 404(1-3)
    連結:
  6. [10] Tzu-Chun Lu, Min-Yung Ke, Sheng-Chieh Yang, Yun-Wei Cheng, Liang-Yi Chen, Guan-Jhong Lin, Yu-Hsin Lu, Jr-Hau He, Hao-Chung Kuo, JianJang Huang. (2010). Optics Letters, 35(24), 4109-4111.
    連結:
  7. [11] Min-Yung Ke, Tzu-Chun Lu, Sheng-Chieh Yang, Cheng-Pin Chen, Yun-Wei Cheng, Liang-Yi Chen, Cheng-Ying Chen, Jr-Hau He, JianJang Huang. (2009). Optics Express, 17(25), 22912-22917.
    連結:
  8. [12] Cheng-Pin Chen, Pei-Hsuan Lin, Liang-Yi Chen, Min-Yung Ke, Yun-Wei Cheng and JianJang Huang. (2009). Nanotechnology, 20(24). doi: 10.1088/0957-4484/20/24/245204
    連結:
  9. [13] Chien Cheng Liu*, Meng Lun Wu, Kuang Chung Liu, Shih-Hua Hsiao, Yu Sheng Chen, Gong-Ru Lin, JianJang Huang. (2009). IEEE, Journal of Display Technology, 5, 192-197.
    連結:
  10. [16] Pai-Chun Chang, Zhiyong Fan, Chung-Jen Chien, Daniel Stichtenoth, Carsten Ronning, Jia Grace Lu. (2006). Appl. Phys. Lett., 89. doi:10.1063/1.2357013.
    連結:
  11. [17] Safaa M. Al-Hilli, M. Willander, Anita Öst, Peter Strålfors J. (2007). Appl. Phys., 102. doi:10.1063/1.2798582.
    連結:
  12. [18] P. H. Lin, C. P. Chen, Y. J. Hung, S. S. Hsu, L. Y. Chen, Y. W. Cheng, M. Y. Ke, C. H. Chiu, H. C. Kuo, J. J. Huang. (2010). IEEE, Photonics Technology Letters, 22, 1589 – 1591.
    連結:
  13. [19] Cheng-Pin Chen, Pei-Hsuan Lin, Yen-Jen Hung, Shao-Shun Hsu, Liang-Yi Chen, Yun-Wei Cheng, Min-Yung Ke, Ying-Yuan Huang, Chun-Hsiang Chang, Ching-Hua Chiu, Hao-Chung Kuo, JianJang Huang. (2010). Nanotechnology, 21(21).
    連結:
  14. [20] Wei Wei, Guang-Hui Ma, Gang Hu, Di Yu, Tom Mcleish, Zhi-Guo Su and Zhe-Yu Shen J. (2008). Am.Chem.Soc., 130(47), 15808–15810. doi:10.1021/ja8039585.
    連結:
  15. [21] Chitta Ranjan Patra, Resham Bhattacharya, Sujata Patra, Sujit Basu,Priyabrata Mukherjee, Debabrata Mukhopadhyay. (2006). Journal of Nanobiotechnology, 4(11). doi:10.1186/1477-3155-4-11.
    連結:
  16. [24] Jon Dobson. (2006). Nanomedicine, l(1), 31-37. doi:10.2217/17435889.1.1.31.
    連結:
  17. [25] Aliasger K. Salem, Peter C. Searson, Kam W. Leong. (2003). Nature Materials, 2, 668-671. doi:10.1038/nmat974.
    連結:
  18. [30] Christopher J Gannon, Chitta Ranjan Patra, Resham Bhattacharya, Priyabrata Mukherjee, Steven A Curley. (2008). Journal of Nanobiotechnology. doi:10.1186/1477-3155-6-2.
    連結:
  19. [31] Tae-Jong Yoon, Kyeong Nam Yu, Eunha Kim, Jun Sung Kim, Byung Geol Kim, Sang-Hyun Yun, Byeong-Hyeok Sohn Prof., Myung-Haing Cho Prof., Jin-Kyu Lee Prof1, Seung Bum Park Prof. (2006). Small, 2(2), 209–215. doi: 10.1002/smll.200500360.
    連結:
  20. [32] Alberto Bianco, Kostas Kostarelos, Maurizio Prato. (2008). Science direct, 5(3), 331-342. doi:10.1517/17425247.5.3.331.
    連結:
  21. [33] Costas G. Hadjipanayis, Michael J. Bonder, Srinivasan Balakrishnan, Xiaoxia Wang, Hui Mao, George C. Hadjipanayis. (2008). Small, 4(11), 1925–1929.
    連結:
  22. [1] W. I. Park, Gyu-Chul Yi, J.-W. Kim, and S.-M. Park, "Schottky nanocontacts on ZnO nanorod arrays, "Appl Phys Lett, 2003, 82, 4358.
    連結:
  23. [2] A.K. Sharma, J. Narayan, J. F. Muth , C. W. Teng , C. Jin, A. Kvit, "Optical and structural properties of epitaxial MgxZn1-xO alloys," Appl. Phys. Lett. 75, 1999,3327.
    連結:
  24. [3] T. Minemoto , T. Negami , S. Nishiwaki, H. Takakura, Y. Hamakawa, " Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering," Thin Solid films, 372, 2000, 173.
    連結:
  25. [4] H. Chik, J. Liang, S. G. Cloutier, N.Kouklin, and J. M. Xu, "Periodic array of uniform ZnO nanorods by second-order self-assembly," Appl. Phys. Lett , 84, 2003, 3376.
    連結:
  26. [5] Woong Lee, Min-Chang Jeong and Jae-Min Myoung, "Evolution of the morphology and optical properties of ZnO nanowires during catalyst-free growth by thermal evaporation," Nanotechnology 15,(2004),1441-1445.
    連結:
  27. [6] Wu, JJ., and Liu, SC., " Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition," Adv. Mater. (2002) 14, 215
    連結:
  28. [7] Supab Choopun, Hitoshi Tabata, Tomoji Kawaia, " Self-assembly ZnO nanorods by pulsed laser deposition under argon atmosphere," (2005). Journal of Crystal Growth, 274, 167–172.
    連結:
  29. [8] K. Ogata, K. Maejimab, Sz. Fujita, Sg. Fujitab., " Growth mode control of ZnO toward nanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy," (2003). Journal of Crystal Growth, 248, 25-30.
    連結:
  30. [9] Ye Suna, Gareth M. Fugea, Michael N.R. Ashfold., " Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods, " (2004). Chemical Physics Letters, 396(1-3), 21-26.
    連結:
  31. [10] Z. W. Liu, C. K. Ong, T. Yu, and Z. X. Shen., " Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties," (2006). Appl. Phys. Lett., 88. doi:10.1063/1.2168675.
    連結:
  32. [11] Wan-Yu Wu, Jyh-Ming Ting., " Growth of single crystal ZnO nanowires using sputter deposition," (2003). Diamond and Related Materials, 1841–1844.
    連結:
  33. [12] Ching-J Yang1, Shun-Min Wang1, Shih-Wei Liang1, Yung-Huang Chang1, Chih Chen1, Jia-Min Shieh., " Low-temperature growth of ZnO nanorods in anodic aluminum oxide on Si substrate by atomic layer deposition," (2007). Appl. Phys. Lett., 90. doi:10.1063/1.2431786.
    連結:
  34. [13] R. Ghosh, M. Dutta, D. Basak., " Self-seeded growth and ultraviolet photoresponse properties of ZnO nanowire array," (2007). APPLIED PHYSICS LETTERS, 91. 073108
    連結:
  35. [14] Ming Yang, Guangsheng Pang, Linfeng Jiang, Shouhua Feng., " Hydrothermal synthesis of one-dimensional zinc oxides with different precursors ," (2006). Nanotechnology, 17, 206–212.
    連結:
  36. [15] H. Q. Le ,S. J. Chua, Y. W. Koh, K. P. Loh ,Z. Chen C. V. Thompson, E. A. Fitzgerald., " Growth of single crystal ZnO nanorods on GaN using an aqueous solution method," (2005). APPLIED PHYSICS LETTERS, 87. 101908
    連結:
  37. [16] J. Richters, T. Voss, L. Wischmeier, I. Ruckmann, and J. Gutowski, "Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires," Applied Physics Letters, vol. 92, p. 011103, 2008.
    連結:
  38. [17] J. Richters, T. Voss, D. Kim, R. Scholz, and M. Zacharias, "Enhanced surface-excitonic emission in ZnO/Al2O3 core¡Vshell nanowires," Nanotechnology, vol. 19, p. 305202, 2008.
    連結:
  39. [18] G. Schoenmakers, D. Vanmaekelbergh, and J. Kelly, "Study of charge carrier dynamics at illuminated ZnO photoanodes," J. Phys. Chem, vol. 100, pp. 3215-3220, 1996.
    連結:
  40. [19] J. He, C. Ho, and C. Chen, "Polymer functionalized ZnO nanobelts as oxygen sensors with a significant response enhancement," Nanotechnology, vol. 20, p. 065503, 2009.
    連結:
  41. [20] X. Liu, X. Wu, H. Cao, and R. Chang, "Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition," Journal of Applied Physics, vol. 95, p. 3141, 2004.
    連結:
  42. [21] W. Park, Y. Jun, S. Jung, and G. Yi, "Excitonic emissions observed in ZnO single crystal nanorods," Applied Physics Letters, vol. 82, p. 964, 2003.
    連結:
  43. [22] C. Chen, M. Ke, C. Liu, Y. Chang, F. Yang, and J. Huang, "Observation of 394 nm electroluminescence from low-temperature sputtered n-ZnO¢A SiO thin films on top of the p-GaN heterostructure," Applied Physics Letters, vol. 91, p. 091107, 2007.
    連結:
  44. [2] X. Chen, G.J. Cheng, S.J. Dong., " Amperometric tyrosinase biosensor based on a sol–gel-derived titanium oxide–copolymer composite matrix for detection of phenolic compounds," Analyst 126 (2001) 1728.
    連結:
  45. [1] X.D. Wang, J.H. Song, C.J. Summers, J.H. Ryou, P. Li, R.D. Dupuis, Z.L. Wang, "Density-Controlled Growth of Aligned ZnO Nanowires Sharing a Common Contact: A Simple, Low-Cost, and Mask-Free Technique for Large-Scale Applications,"J. Phys. Chem. B 110 (2006) 7720.
    連結:
  46. [2] M. Krunks, A. Katerski, T. Dedova, I. Oja Acik, and A. Mere, "Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array,"Solar Energy Mater. Solar Cells 92, 1016 (2008).
    連結:
  47. [3] C. Lee, T. Lee, S. Lyu, Y. Zhang, H. Ruh, and H. Lee,"Field emission from well-aligned zinc oxide nanowires grown at low temperature," Appl. Phys. Lett. 81, 3648 (2002).
    連結:
  48. [5] Amir Onn, Arlene M. Correa, Michael Gilcrease, Takeshi Isobe, Erminia Massarelli, Corazon D. Bucana, Michael S. O’Reilly, Waun K. Hong, Isaiah J. Fidler, Joe B. Putnam, and Roy S. Herbst, "Synchronous Overexpression of Epidermal Growth Factor Receptor and HER2-neu Protein Is a Predictor of Poor Outcome in Patients with Stage I Non-Small Cell Lung Cancer," Clin Cancer Res 2004;10:136-143.
    連結:
  49. Ch1
  50. [1] http://en.wikipedia.org/wiki/Light-emitting_diode#cite_note-51
  51. [2] Kuei Fang Hsu, Sim Loo, Fu Guo, Wei Chen, Jeffrey S. Dyck, Ctirad Uher, Tim Hogan, E. K. Polychroniadis, Mercouri G. Kanatzidis. (2004). Science, 6, 818-821.
  52. [5] Aranovich, Julio; Ortiz, Armando; Bube, Richard H. (1979). Journal of Vacuum Science and Technology, 16(4).
  53. [9] Woong Leea, Min-Chang Jeonga, Jae-Min Myoung. (2004). Acta Materialia, 52(13).
  54. [14] Meng Lun Wu, Kuang Chung Liu, Shih Hua Hsiao, and JianJang Huang. (2008). ECS Transactions, 16(12), 75-80.
  55. [15] Xudong Wang, Xudong Wang, Jun Zhou, Jinhui Song, Jin Liu, Ningsheng Xu, Zhong L. Wang. (2006) Nano Lett., 6(12), 2768–2772.
  56. [22] OV Salata. (2004). Journal of Nanobiotechnology, 2(3).
  57. [23] Mikaela Nichkova, Dosi Dosev, Shirley J. Gee, Bruce D. Hammock, Ian M. Kennedy Anal. (2005). Chem., 77 (21), 6864–6873. doi: 10.1021/ac050826.
  58. [26] Deng Zhanga, David J. Carra and Evangelyn C. Alocilja. (2009). Biosensors and Bioelectronics, 24(5), 1377-1381.
  59. [27] Adam Dorfman, Nitin Kumar, Jong-in Hahm. (2006). Langmuir, 22(11), 4890–4895. doi: 10.1021/la053270.
  60. [28] Benjamin S. Harrison, Anthony Atala. (2007). Biomaterials, 28, 344-353.
  61. [29] SHOUFENG YANG, Ph.D., KAH-FAI LEONG, M.S.E., M.S.M.E., ZHAOHUI DU, Ph.D., CHEE-KAI CHUA, Ph.D. (2001). TISSUE ENGINEERING, 7(6).
  62. [34] Mark Green Dr. Angewandte Chemie. (2004). International Edition, 43(32), 4129–4131.
  63. Ch2
  64. Ch3
  65. [1] http://www.ncbi.nlm.nih.gov/books/NBK27144/#325
  66. [3] James A. Bonner, Kevin P. Raisch, Hoa Q. Trummell, Francisco Robert, Ruby F. Meredith, Sharon A. Spencer, Donald J. Buchsbaum, Mansoor N. Saleh, Murray A. Stackhouse, Albert F. LoBuglio, Glenn E. Peters, William R. Carroll, and Harlan W. Waksal., " Enhanced Apoptosis With Combination C225/Radiation Treatment Serves as the Impetus for Clinical Investigation in Head and Neck Cancers," J Clin Oncol 18:47s-53s.
  67. [4] Amir Onn, Arlene M. Correa, Michael Gilcrease, et al., " Cancer Outcome in Patients with Stage I Non-Small Cell Lung Receptor and HER2- neu Protein Is a Predictor of Poor Synchronous Overexpression of Epidermal Growth Factor," Clin Cancer Res 2004;10:136-143.
  68. Ch4
  69. [4] James A. Bonner, Kevin P. Raisch, Hoa Q. Trummell, Francisco Robert, Ruby F. Meredith, Sharon A. Spencer, Donald J. Buchsbaum, Mansoor N. Saleh, Murray A. Stackhouse, Albert F. LoBuglio, Glenn E. Peters, William R. Carroll, and Harlan W. Waksal, "Enhanced Apoptosis With Combination C225/Radiation Treatment Serves as the Impetus for Clinical Investigation in Head and Neck Cancers," J Clin Oncol 18:47s-53s.