Translated Titles

Study on Polymer/Exfoliated Montmorillonite Nanocomposites





Key Words

高分子乳液 ; 蒙脫石 ; 奈米複合材料 ; Emulsion ; Montmorillonite ; Nanocomposite



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


English Abstract

A series of partial and fully water-soluble monomers, including methyl methacrylate, methyl acrylate, vinyl acetate, acrylamide, and glycidyl methacrylate, were used to fabricate polymer-Montmorillonite(MMT) nanocomposite through soap-free emulsion polymerization or solution polymerization, while MMT was intercalated by potassium persulfate(KPS) initiator in advance. Due to the confined space of clay interlayer regions, the polymerizing chains were aggregated into a disk-like or irregular domain depending on their intrinsic properties. The growing domains would trigger the exfoliation of MMT, and further polymerization afforded the latex particles of Polymer-MMT nanocomposites. In addition, for fully water soluble monomer, such as acrylamide, the growing chain would also exfoliate MMT. However, they formed a hydrogel system with dispersed exfoliated MMT nanoplatelets. In brief, the exfoliated polymer-MMT nanocomposite could be fabricated from partial or fully water-soluble monomers through polymerization in the interlayer regions of MMT. In order to study the effect of dispersed MMT nanoplatelets on the properties of polymers, exfoliated poly(vinyl acetate)-montmorillonite (PVAc-MMT) nanocomposite films and crosslinked poly(vinyl acetate- Glycidyl methacrylate)-montmorillonite (PVAc-GMA-MMT) crosslinked nanocomposite films were fabricated for further analysis. These transparent smooth films performed many superior properties, such as mechanical properties, vapor barrier properties, chemical resistance and fire retardation. In conclusion, MMT nanoplatelets acted as nano-size scaffolds in the nanocomposite structure to improve physical properties.

Topic Category 工學院 > 高分子科學與工程學研究所
工程學 > 化學工業
  1. [3]Utracki, L. A. Clay-Containing Polymeric Nanocomposites; Rapra Technology: Shrewsbury, 2004.
  2. [4]Ke, Y. C.; Stroeve P. Polymer-Layered Silicate and Silica Nanocomposites; Amstertam: Boston, 2005
  3. [6]Olphen, H. V. An Introduction to Clay Colloid Chemistry; Krieger Publishing Company: Malabar, 1991
  4. [10](a) Fornes, T. D.; Hunter, D. L.; Paul, D. R. Macromolecules 2004, 37, 1793. (b) Tsai, T. Y.; Li, C. H.; Chang, C. H.; Cheng, W. H.; Hwang, C. L.; Wu, R. J. Adv. Mater. 2005, 17, 1769.; (c) Zha, W.; Choi, S.; Lee, K. M.; Han, C. D. Macromolecules 2005, 38, 8418.; (d) Voorn, D. J.; Ming, W.; Herk, A. M. Macromolecules 2006, 39, 4645.; (e) Ma, J.; Yu, Z. Z.; Kuan, H. C.; Dasari, A.; Mai, Y. W. Macromol. Rapid. Commun. 2005, 26, 830.
  5. [11](a) Ma, J.; Yu, Z. Z.; Zhang, Q. X.; Xie, X. L.; Mai, Y. W.; Luck, I. Chem. Mater. 2004, 16, 757.; (b) Fan, X.; Xia, C.; Advincula, R. C. Langmuir 2005, 21, 2537.(c) Choi, Y. S.; Ham, H. T.; Chung, I. J. Polymer 2003, 44, 8147.; (d)Choi, Y. S.; Chung, I. J. Polymer 2004, 45, 3827. (e) Meneghetti, P.; Qutubuddin, S. Langmuir 2004, 20, 3424.
  6. [12](a) Haraguchi, K.; Ebato, M.; Takehisa, T. Adv. Mater. 2006, 18, 2250-2254.; (b) Ji, Y.; Li, B.; Ge, S.; Sokolov, J. C.; Rafailovich, M. H. Langmuir 2006, 22, 1321. (c) Garai, A.; Kuila, B. K.; Naudi, A. K. Macromolecules 2006, 39, 5410. (d)Chen, B.; Evans, J. R. G. Macromolecules 2006, 39, 747
  7. [15]Nielsen, L. E. J. Macromol. Sci. Chem. 1967, A1, 929.
  8. [16]Bharadeaj, R. K. Macromolecules 2001, 34, 9189.
  9. [17](a)Ruiz-Hitzky, E.; Aranda, P. Adv. Mater. 1990, 2, 545. (b) Vaia, R. A.; Vasudevan, S. V.; Krawiec, W.; Scanlon, L. G., Giannelis, E. P. Adv. Mater. 1995, 7, 154.
  10. [18]Odian, G. Principles of Polymerization; Wiely-Interscience: Hoboken, 2004.
  11. [21](13) Warson, H.; Finch, C. A. Application of synthetic Resin Latices; JohnWiley & Sons: New York, 2001.
  12. [28]Voorn, D. J.; Ming, W.; Herk, A. M. Macromolecules 2006, 39, 2137
  13. [29]Tong, Z.; Deng, Y Ind. Eng. Chem. Res. 2006, 45, 2641
  14. [31]Cauvin, S.; Colver, P. J.; Bon, S. A. F. Macromolecules 2005, 38, 7887.
  15. [32]Voorn, D. J.; Ming, W.; Herk, A. M. Macromolecules 2006, 39, 4654
  16. [33](a) Choi, Y. S.; Choi, M. H.; Eang, K. H.; Kim, S. O.; Kim, Y. K.; Chung, I. J. Macromolecules 2001, 34, 8978.; (b) Choi, Y. S.; Ham, H. T.; Chung, I. J. Polymer 2003, 44, 8147.; (c)Choi, Y. S.; Chung, I. J. Polymer 2004, 45, 3827.
  17. [35]Zhang, W. D.; Phang, I. Y.; Liu, T. Adv. Mater. 2006, 18, 73
  18. [40]Sato, H.; Yamagishi, A.; Kawamura, K. J. Phys. Chem. B 2001, 105, 7990
  19. [42]Lin, K. F.; Lin, S. C. Chien, A. T.; Hsieh, C. C.; Yen, M. H.; Lin, C. S.; Chiu, W. Y.; Lee, Y. H. J. Polym. Sci., Part A: Polym. Chem. 2006, 31, 1755.
  20. [46]Lin, K. F.; Hsu, C. Y.; Huang, T. S.; Chiu, W. Y.; Lee, Y. H.; Young, T. H. J. Appl. Polym. Sci. 2005, 98, 2042.
  21. [1]Gomez-Romero, P.; Sanchez, C. Functional Hybrid Materials; Wiely-VCH: Weinheim, 2004.
  22. [2]Friedrich, K.; Fakirov, S.; Zhang, Z. Polymer Composites; Spring: New York, 2005.
  23. [5]Pinnavaia, T. J.; Beall, G. E. Polymer-Clay Nanocomposites; John Wiely & Sons: New York, 2000.
  24. [7]http:// www.nano.gov/
  25. [8]Maksimov, R. D.; Gaidukovs, S.; Kalnins, M.; Zican, J.; Plume, E. Mechanics of Composite Materials, 42, 2006
  26. [9]http://www.geoclassroom.com/mineralogy/phyllosilicates.html
  27. [13](a) Zanetti, M.; Camino, G.; Canavese, D.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A. Chem. Mater. 2002, 14, 189. (b) Zhu, J.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A. Chem. Mater. 2001, 13, 3774. (c) Marius C.; Costache, D. D.; Jiang, C. A.; Wilkie Polymer 2005, 46 6947. (d) Nanetti, M.; Kashiwagi, T.; Falqui, L.; Camino, G. Chem. Mater. 2002, 14, 881.
  28. [14](a) Yano, K.; Usuki, A.; Okada, A. J. Polym. Sci. A: Polym. Chem. 1997, 35, 2289. (b) Russo, G. M.; Simon, G. P., Incarnato, L. Macromolecules 2006, 39, 3855. (c) Triantafyllidis, K. S.; LeBaron, P. C.; Park, I.; Pinnavaia, T. J. Chem. Mater. 2006, 18, 4393.
  29. [19](a) Li, J. Q.; Salovey, R. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 3181.; (b) Ni, H.; Du, Y.; Ma, G.; Nagai, M.; Omi, S. Macromolecules 2001, 34, 6577. (c) Lin, K. F.; Shieh, Y. D. J. Appl. Polym. Sci. 1998, 69, 2069. (d) Lin, K. F.; Shieh, Y. D. J. Appl. Polym. Sci. 1998, 70, 2313.
  30. [20](a) Goodall, A. R.; Wilkinson, M. C.; Hearn, J. J. Polym. Sci.: Polym. Chem. Ed. 1977, 15, 2193.; (b) Song, S.; Poehlein, G. W. J. Colloid Interface Sci. 1989, 128, 486.; (c)Hansen, F. K.; Ugelstad, J. J. Polym. Sci.: Polym. Chem. Ed. 1978, 16, 1953. (d) Fitch, R. M.; Tsai, C. H. In Polymer Colloids; Fitch, R. M., ed.; Plenum Press: New York, 1971; p 73. (e) Chen, Y. C.; Lee, C. F.; Chiu, W. Y. J. Appl. Polym. Sci. 1996, 61, 2235.
  31. [22]Bohidar, H. B.; Dubin, O.; Osada, Y. Polymer Gels; Fundamentals and Applications; American Chemical Society: Washington DC, 2002.
  32. [23]Osada, Y.; Khokhlov, A. R. Polymer Gels and Networks; Marcel Dekker: New York, 2002.
  33. [24]Mark, J. E. Polymer Data Handbook; Oxford University Press: New York, 1999
  34. [25](a) McManus, A. J.; Doremus, R. H.; Siegel, R. W.; Bizios, R. J. Biomed. Mater. Res., Part A 2005, 72, 98. (b) Larraz. E.; Elvira, C.; Roman, J. S. Bioacromolecules 2005, 6, 2058
  35. [26]Zhang, W.; Chen, D.; Zhao, Q.; Fang, Y. Polymer 2003, 44, 7953.
  36. [27](a) Huang, X.; Brittain, W. J. Macromolecules 2001, 34, 3255.; (b) Wang, D.; Zhu, J.; Yao, Q.; Wilkie, C. A. Chem. Mater. 2002, 14, 3837.; (c) Meneghetti, P.; Qutubuddin, S. Langmuir 2004, 20, 3424.
  37. [30]Chou, C. C. and Lin, J. J. Macromolecules 2005, 38, 230
  38. [34]Viville, P.; Lazzaroni, R.; Pollet, E.; Alexandre, M.; Dubois, P. J. Am. Chem. Soc. 2004, 126, 9007
  39. [36]Usuki, A.; Hasegawa, N.; Kadoura, H.; Pkamoto, T. Nano Lett. 2001, 1, 271.
  40. [37](a)Lin, J. J.; Chu, C. C.; Chou, C. C.; Shieu, F. S. Adv. Mater. 2005, 17, 301. (b) Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tsai, W. C. J. Phys. Chem. B. 2006; 110; 18115
  41. [38]Piner, R. D.; XU, T. T.; Fisher, F. T.; Qiao, Y.; Ruoff, R. S. Langmuir 2003, 19, 7995.
  42. [39]Drummy, L. F.; Koerner, H.; Farmer, K.; Tan, A.; Farmer, B. L., Vaia, R. A. J. Phys. Chem. B 2005, 109, 17868.
  43. [41]Yeom, E. H.; Kim, W. N.; Kim, J. K.; Lee, S. S.; Park, M. Mol. Crtst. Liq. Cryst. 2004, 425, 85.
  44. [43](a) Napper, D. G.; Parts, A. G. J. Polym. Sci. 1962, 61, 113. (b) Dunn, A. S.; Taylor, P. A. Makromol. Chem. 1965, 53, 207. (c) Nomura, M.; Sasaki, S. L. J. Appl. Polym. Sci. 1978, 22, 1043. (d)Moustafa, B.; Abd el Hakim, A. A.; Mohamed, G. A. J. Appl. Polym. Sci. 1997, 63, 239.
  45. [44](a) Naetti, M.; Camino. G.; Thomann. R.; Mulhaupt, R. Polymer 2001, 42, 4501. (b) Zhang, W.; Chen, D.; Zhao, Q.; Fang, Y. Polymer 2003, 44, 7953. (c) Gelfer, M. Y.; Burger, C.; Chu, B.; Hsiao, B. S.; Drozdov, A. D.; Si, M.; Rafailovich, M.; Sauer, B. B.; Gilman, J. W. Macromolecules 2005, 38, 3765.
  46. [45]Yu, Y. H.; Lin, C. Y.; Yeh, J. M.; Lin, W. H. Polymer 2003, 44, 3553.
  47. [47](a)http://www.tu-darmstadt.de/fb/ms/student/fs/german/lab/w5/mse5-1.htm. (b) ASTM D368
  48. [48](a)Brown, R. P. Handbook of Plastics Test Method; G. Godwin in association with the Plastics and Rubber Institute: London, 1981. (a) ASTM E96
  49. [49](a) http://www.ptli.com/testlopedia/tests/water_vapor_trans-E96.asp. (b) http://www.ptli.com/testlopedia/tests/water_vapor_trans-E96.asp.