Title

以蛋白質體及醣質體分析華勒蝮以及眼鏡王蛇兩種蛇毒的地理差異

Translated Titles

Proteomic and glycomic analyses of venom geographic variations of Wagler's pit vipers and king cobra

DOI

10.6342/NTU.2012.00271

Authors

張惠晴

Key Words

蛇毒地理性差異 ; 磷酯酶A2 ; 聚醣結構 ; 血小板凝集抑制劑 ; 華勒蝮 ; 眼鏡王蛇 ; 三指毒素 ; geographic variation ; venom phospholipases A2 ; glycan structure ; platelet aggregation inhibitor ; Tropidolaemus wagleri ; Ophiophagus hannah ; three-finger toxin

PublicationName

臺灣大學生化科學研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

蔡蔭和

Content Language

英文

Chinese Abstract

在後基因體時代,蛇毒的研究在蛋白質體及轉錄體方面都快速進展,許多蝮蛇及眼鏡王蛇蛇毒亦不例外。探討蛇毒地理的或個別的變異性為蛇毒蛋白質體研究的一個層次或面向。在此,我們藉由蛋白質體以及醣質體分析方法探討來自兩個地區的華勒蝮以及四個地區的眼鏡王蛇其蛇毒當中主要的蛋白質的異同以及其生理功能特性。 第一部分 從蘇拉維西以及蘇門答臘的華勒蝮蛇毒中我們分別純化到兩個磷酯酶,其中一個是具活性、第六個胺基酸為榖胺酸的磷酯酶(稱之E6-PLA2),而另一個則是不具活性、推測其第49個胺基酸可能為賴胺酸的磷酯酶(Lys49-like PLA2)。從這兩個地區分離純化到的磷酯酶無論是在分子量或是N端胺基酸序列都明顯不同,雖然他們在表現物種特有的神經毒素waglerin上具有高度保留性,從結果上看來這兩個地區的華勒蝮可能是兩個不同的種(T.subannulatus 以及 T. wagleri)。這個結果也是與西元2007年發表此蛇分類的結果是相符的。這兩個地區所表現具活性的磷酯酶,在本篇研究中也依照他們可能分屬的種名,命名為Tsu-E6(來自蘇拉維西)以及Twa-E6(來自蘇門答臘)。而後續研究發現,這兩個E6-PLA2在胺基酸序列第14位置的天門醯胺上有醣化的現象。進一步以N-醣醯胺酶(PNGase F)水解去除醣基可發現磷酯酶的分子量明顯從16 kDa減少到14 kDa,並且以質譜(MALDI-TOF)分析水解下來的醣基發現其是一個不具涎酸化(sialylation)且混合型式的寡糖。研究其生理功能,我們發現Tsu-E6對於由ADP引起的小鼠或人類血小板凝集作用都是抑制效果,而Twa-E6對於由ADP或膠原蛋白所引起的人類血小板凝集也是相同的作用,但對小鼠的血小板凝集卻是誘導作用。若進一步去分析這兩個磷酯酶在去除醣基後酵素活性或是血小板凝集作用則是沒有顯著差異。另外,探討醣基是否對蛋白質的熱穩定性有所影響,其結果發現Twa-E6的熱穩定性與其他不具醣基的磷酯酶是一樣的好。從以上結果可知,這個醣基的存在也許有其他的生理意義仍有 待我們進一步的探討。 第二部分 目前文獻上少有眼鏡王蛇毒地理差異的研究。我們買了分別來自印尼、馬來西亞、廣東、海南島等四個不同地區的眼鏡王蛇毒來分析其蛋白成分是否存在地理性差異。從蛇毒的酵素活性、用三種色層柱分析主要蛋白質組成,以及對小鼠毒性等分析結果發現其地理性的差異確實存在。以往文獻指出從中國幾個地區的眼鏡王蛇毒中純化到主要為已知名為OH-APLA2的磷酯酶,但來自印尼以及馬來西亞的蛇毒則表現另一在研究新發現並命名為PLA-3的酵素。三指毒素(3FTx)成分而言,雖然在這四個地區的蛇毒中具有或高或低的oh-55,但其他種神經毒素或3FTxs的組成卻是具有高度變異性的。另外,東南亞的眼鏡王蛇毒不像中國的含有明顯prothrombin活化酵素,我們的研究發現來自印尼的眼鏡王蛇毒含有比較高活性的鹼性磷酸酶(alkaline phosphomonoesterase),卻有極低的磷酯酶。這些酵素可能彼此在蛇毒毒性上有協同作用,在未來可能值得進一步的探討。

English Abstract

Herein, we have investigated the geographic variations of Tropidolaemus wagleri from two regions and those of O. hannah from four regions by venom protein purifications, identification and biofuntional characterizations using the proteomic and glycomic approaches. Part I. Phospholipases A2 (PLA2s) were purified and characterized from Tropidolaemus wagleri venoms collected from Sulawesi and Sumatra. An active PLA2 and an inactive Lys49-like PLA2 could be isolated from each venom sample. Mass analyses and N-terminal sequences revealed that the PLA2 variants from the two venom samples were different although their neurotoxic waglerins were identical. Thus, the samples were probably derived from two species (T. subannulatus and T. wagleri), consistent with the recent taxonomic study of this genus. Since the Glu6 residue was conserved in both the PLA2s, the PLA2s from Sulawesi and Sumatra were designated as Tsu-E6 and Twa-E6, respectively. Interestingly, both Tsu-E6 and Twa-E6 appeared to be glycosylated at Asn14. Hydrolysis by PNGase F reduced their apparent masses from 16 to 14 kDa. The released glycans were further analyzed by MALDI-TOF and shown to be complex type oligosaccharides without sialylation. Tsu-E6 inhibited ADP-induced aggregation of mouse and human platelets, and Twa-E6 inhibited the ADP- or collagen-induced aggregation of human platelets, but stimulated the aggregation of mouse platelets. However, enzymatic removal of glycans from both the PLA2s did not significantly alter their effects on lipid hydrolysis and platelet aggregation. The thermostability of Twa-E6 was found to be as good as those of other homologous PLA2s. The presence of these oligosaccharides on snake venom PLA2s therefore warrants further analyses. Part II. We profiled and analyzed four geographic venom samples of O. hannah which were obtained from Indonesia, Malaysia, Guangxi, and Hai-Nan. The enzyme activities, toxicities on mice of the four venoms were investigated. The PLA2s and 3FTxs were purified. There are great geographic variations in the enzyme content, protein composition and toxic properties between the Southeast Asian and Chinese king cobra venoms. The OH-APLA2 is the major PLA2 conserved in the venoms from China, and the venom from Indonesia and Malaysia express a PLA2 similar to OH-APLA2 II as judged by PMF analysis. Chinese king cobra venoms appear to have lower metalloprotease or hemorrahagin activities but higher prothrombinase activities. Even though the oh-55 3FTx is conserved in king cobra venoms, it is not the most abundant in all the kign cobra venom. The composition of the other 3FTx variants is highly variable. Finally, the venom from Indonesia is especially performing high alkaline phosphomonoesterase activity, which may present synergistic reaction in the toxic property of venom. This will need a further investigation to resovle.

Topic Category 生命科學院 > 生化科學研究所
生物農學 > 生物科學
Reference
  1. 1. Wuster, W. & Harvey, A. L. (1996) Reviews of venomous snake systematics in Toxicon, Toxicon 34, 397-398.
    連結:
  2. and functional diversification of the venom system in the advanced snakes(Caenophidia), Mol Cell Proteomics 7, 215-246.
    連結:
  3. 3. Aird, S. D. (2002) Ophidian envenomation strategies and the role of purines,Toxicon 40, 335-393.
    連結:
  4. 4. Gutierrez, J. M., Lomonte, B., Leon, G., Rucavado, A., Chaves, F. & Angulo, Y.(2007) Trends in snakebite envenomation therapy: scientific, technological and public
    連結:
  5. health considerations, Curr Pharm Design 13, 2935-2950.
    連結:
  6. 5. Gold, B. S., Dart, R. C. & Barish, R. A. (2002) Bites of venomous snakes, N Engl J Med 347, 347-356.
    連結:
  7. 6. Patterson, L. & Swallow, S. (1991) Sea snake envenomation, Med J Australia 155, 850-850.
    連結:
  8. 7. Gold, B. S. & Wingert, W. A. (1994) Snake venom poisoning in the United States: a
    連結:
  9. 8. Chippaux, J. P., Williams, V. & White, J. (1991) Snake venom variability: methods
    連結:
  10. of study, results and interpretation, Toxicon 29, 1279-1303.
    連結:
  11. 9. Daltry, J. C., Wuster, W. & Thorpe, R. S. (1996) Diet and snake venom evolution,
    連結:
  12. Nature 379, 537-540.
    連結:
  13. venom of the Malayan pit viper (Calloselasma rhodostoma), Toxicon 34, 67-79.
    連結:
  14. 12. Tsai, I. H., Chen, Y. H., Wang, Y. M., Liau, M. Y. & Lu, P. J. (2001) Differential
    連結:
  15. expression and geographic variation of the venom phospholipases A2 of Calloselasma
    連結:
  16. 13. Tsai, I. H., Tsai, H. Y., Saha, A. & Gomes, A. (2007) Sequences, geographic
    連結:
  17. FEBS J 274, 512-525.
    連結:
  18. 14. Tsai, I. H., Wang, Y. M., Chen, Y. H. & Tu, A. T. (2003) Geographic variations,
    連結:
  19. cloning, and functional analyses of the venom acidic phospholipases A2 of Crotalus
    連結:
  20. viridis viridis, Arch Biochem Biophys 411, 289-296.
    連結:
  21. 15. Budnik, L. T. & Mukhopadhyay, A. K. (2002) Lysophosphatidic acid and its role
    連結:
  22. protein puzzle. In Venom Phospholipase A2 Enzymes: Structure, Function and
    連結:
  23. H. (1990) Purification and amino acid sequence of basic protein I, a lysine-49
    連結:
  24. phospholipase A2 with low activity, from the venom of Trimeresurus flavoviridis (Habu
    連結:
  25. snake), Toxicon 28, 43-54.
    連結:
  26. of bee-venom phospholipase A2 in a complex with a transition-state analogue, Science
    連結:
  27. phospholipase A2 isolated from the venom of the marine snail Conus magus, J Biol
    連結:
  28. 21. Schaloske, R. H. & Dennis, E. A. (2006) The phospholipase A2 superfamily and its
    連結:
  29. group numbering system, Bba-Mol Cell Biol L 1761, 1246-1259.
    連結:
  30. 23. Markland, F. S. (1998) Snake venoms and the hemostatic system, Toxicon 36,
    連結:
  31. Valtorta, F., Montecucco, C. & Rossetto, O. (2004) Snake presynaptic neurotoxins with
    連結:
  32. phospholipase A2 activity induce punctate swellings of neurites and exocytosis of
    連結:
  33. venom phospholipases A2: insights into the mechanisms of local and systemic
    連結:
  34. myotoxicity, Toxicon 42, 915-931.
    連結:
  35. venom Lys-49 phospholipase A2 to LPS and suppression of its effects on mouse
    連結:
  36. lethal peptide from the venom of wagler pit viper, Trimeresurus wagleri, Toxicon 33,
    連結:
  37. on neuromuscular transmission of mouse nerve-muscle preparations, Toxicon 33,
    連結:
  38. Characterization and amino acid sequences of two lethal peptides isolated from venom
    連結:
  39. Crotalinae group II phospholipases A2, J Mol Evol 57, 546-554.
    連結:
  40. 34. Tsai, I. H. (1997) Phospholipases A2 of Asian snake venoms, J Toxicol-Toxin Rev.
    連結:
  41. 35. Wang, Y. M., Liew, Y. F., Chang, K. Y. & Tsai, I. H. (1999) Purification and
    連結:
  42. characterization of the venom phospholipases A2 from Asian monotypic crotalinae
    連結:
  43. snakes, J Nat Toxins 8, 331-340.
    連結:
  44. diverse set of sequence analysis tools, Nucleic Acids Res 32, W20-W25.
    連結:
  45. (1994) Mass spectrometry of carbohydrate-containing biopolymers, Methods Enzymol
    連結:
  46. 38. Chen, H. S., Chen, J. M., Lin, C. W., Khoo, K. H. & Tsai, I. H. (2008) New
    連結:
  47. 39. Lin, C. W., Chen, J. M., Wang, Y. M., Wu, S. W., Tsai, I. H. & Khoo, K. H. (2011)
    連結:
  48. Glycobiology 21, 530-542.
    連結:
  49. MALDI-Q/TOF and TOF/TOF tandem mass spectrometry for sequencing ofpermethylated complex type N-glycans, Glycoconj J 23, 355-369.
    連結:
  50. 42. Tsai, I. H., Wang, Y. M., Au, L. C., Ko, T. P., Chen, Y. H. & Chu, Y. F. (2000)
    連結:
  51. 43. Wang, Y. M., Peng, H. F. & Tsai, I. H. (2005) Unusual venom phospholipases A2
    連結:
  52. phospholipase A2s from Agkistrodon halys Pallas, J Nat Toxins 10, 43-55.
    連結:
  53. neofunctionalization of snake venom phospholipase A2 genes, Bmc Evol Biol 7.
    連結:
  54. 47. Tsai, I. H., Wang, Y. M., Chen, Y. H., Tsai, T. S. & Tu, M. C. (2004) Venom
    連結:
  55. 48. Gibbs, H. L. & Mackessy, S. P. (2009) Functional basis of a molecular adaptation:
    連結:
  56. 49. Chen, Y. L., Huang, T. F., Chen, S. W. & Tsai, I. H. (1995) Determination of the
    連結:
  57. variants to inhibit aggregation of platelets from different species, Biochem J 305,
    連結:
  58. the Australian common brown snake (Pseudonaja textilis). 3. The complete amino-acid
    連結:
  59. sequences of all the subunits, Biochim Biophys Acta 1161, 223-229.
    連結:
  60. 52. Shipolini, R. A., Callewaert, G. L., Cottrell, R. C., Doonan, S., Vernon, C. A. &
    連結:
  61. Banks, B. E. (1971) Phospholipase A from bee venom, Eur J Biochem 20, 459-468.
    連結:
  62. 53. Kini, R. M. & Evans, H. J. (1995) A hypothetical structural role for prolineresidues in the flanking segments of protein-protein interaction sites, Biochem Biophys
    連結:
  63. Res Commun 212, 1115-1124.
    連結:
  64. carbohydrate chains from honeybee venom phospholipase A2, Eur J Biochem 213,
    連結:
  65. the secreted phospholipase A2-paradigm, Chem Rev 101, 2613-2653.
    連結:
  66. O-linked Xyl-GlcNAc and Xyl-Glc disaccharides in trocarin, a factor Xa homolog from
    連結:
  67. snake venom, J Thromb Haemost 1, 545-550.
    連結:
  68. 57. Mehrtens, J. (1987) Living Snakes of the World.
    連結:
  69. by venomous animals, Am J Med 42.
    連結:
  70. case of king cobra envenomation in the United Kingdom, complicated by severe
    連結:
  71. anaphylaxis, Anaesthesia 62, 75-78.
    連結:
  72. 60. Chang, C. C., Huang, T. Y., Kuo, K. W., Chen, S. W., Huang, K. F. & Chiou, S. H.
    連結:
  73. (1993) Sequence characterization of a novel alpha-neurotoxin from the king cobra
    連結:
  74. (Ophiophagus hannah) venom, Biochem Bioph Res Co 191, 214-223.
    連結:
  75. 61. Ganthavorn, S. (1969) Toxicities of Thailand snake venoms and neutralization
    連結:
  76. envenomation in Myrtle Beach, South Carolina, Ann Emerg Med 32, 736-738.
    連結:
  77. 63. Kini, R. M. (2002) Molecular moulds with multiple missions: functional sites in
    連結:
  78. three-finger toxins, Clin Exp Pharmacol Physiol 29, 815-822.
    連結:
  79. nicotinic acetylcholine receptor, forty years on, J Pharmacol Sci 94, 1-17.
    連結:
  80. 65. Tsernoglou, D., Petsko, G. A. & Hudson, R. A. (1978) Structure and function of
    連結:
  81. 66. Chang, C. C. (1999) Looking back on the discovery of alpha-bungarotoxin, J
    連結:
  82. Biomed Sci 6, 368-375.
    連結:
  83. 67. Lee, C. Y. (1972) Chemistry and pharmacology of polypeptide toxins in snake
    連結:
  84. venoms, Annu Rev Pharmacol 12, 265-286.
    連結:
  85. 68. Menez, A. (1998) Functional architectures of animal toxins: a clue to drug design,
    連結:
  86. Toxicon 36, 1557-1572.
    連結:
  87. 69. Tsetlin, V. (1999) Snake venom alpha-neurotoxins and other 'three-finger' proteins,
    連結:
  88. Eur J Biochem 264, 281-286.
    連結:
  89. 70. Hodgson, W. C. & Wickramaratna, J. C. (2002) In vitro neuromuscular activity of
    連結:
  90. snake venoms, Clin Exp Pharmacol Physiol 29, 807-814.
    連結:
  91. acidic phospholipase A2 enzymes from king cobra (Ophiophagus hannah) snake venom,
    連結:
  92. 72. Chiou, J. Y., Chang, L. S., Chen, L. N. & Chang, C. C. (1995) Purification and
    連結:
  93. characterization of a novel phospholipase A2 from king cobra (Ophiophagus hannah)
    連結:
  94. venom, J Protein Chem 14, 451-456.
    連結:
  95. Complete amino acid sequence of an acidic, cardiotoxic phospholipase A2 from the
    連結:
  96. 'pancreatic loop', Arch Biochem Biophys 338, 150-156.
    連結:
  97. 74. Wang, Q. Y., Shu, Y. Y., Zhuang, M. X. & Lin, Z. J. (2001) Cloning and sequence
    連結:
  98. of a metalloproteinase from king cobra snake venom, Toxicon 49, 954-965.
    連結:
  99. expression and characterization of a novel dual serine protease inhibitor, OH-TCI, from
    連結:
  100. properties of a blood coagulation factor X activator from the venom of king cobra
    連結:
  101. 80. Chang, L. S., Chung, C., Huang, H. B. & Lin, S. R. (2001) Purification and
    連結:
  102. characterization of a chymotrypsin inhibitor from the venom of Ophiophagus hannah
    連結:
  103. (King Cobra), Biochem Bioph Res Co 283, 862-867.
    連結:
  104. alpha-neurotoxins from king cobra (Ophiophagus hannah), Toxicon 44, 295-303.
    連結:
  105. 83. Joubert, F. J. (1973) Snake venom toxins the amino acid sequences of two toxins
    連結:
  106. 84. Peng, S. S., Kumar, T. K. S., Jayaraman, G., Chang, C. C. & Yu, C. (1997)Solution structure of toxin b, a long neurotoxin from the venom of the king cobra
    連結:
  107. functional characterization of a novel homodimeric three-finger neurotoxin from the
    連結:
  108. cobra phospholipase A2 determined from a hemihedrally twinned crystal, Acta
    連結:
  109. Crystallogr D Biol Crystallogr 59, 1574-1581.
    連結:
  110. 88. Whitaker, J. R. (1983) Methods of Enzymatic Analysis, Vol 1, Fundamentals -
    連結:
  111. 89. Lo, T. B., Chen, Y. H. & Lee, C. Y. (1966) Chemical studies of Formosan cobra
    連結:
  112. CM-sepadex and preliminary characterization of its components, J Chin Chem Soc-Taip
    連結:
  113. phosphatases (acid and alkaline phosphomonoesterases) in snake venoms related to
    連結:
  114. phospholipase-A2 purified from Ophiophagus hannah (king cobra) venom on rat-heart,
    連結:
  115. Toxicon 31, 627-635.
    連結:
  116. 93. Zhang, H. L., Xu, S. J., Wang, Q. Y., Song, S. Y., Shu, Y. Y. & Lin, Z. J. (2002)
    連結:
  117. Structure of a cardiotoxic phospholipase A2 from Ophiophagus hannah with the
    連結:
  118. "pancreatic loop", J Struct Biol 138, 207-215.
    連結:
  119. tryptophan oxidation products in bovine alpha-crystallin, Protein Sci 7, 2391-2397.
    連結:
  120. metalloproteinases, key members of the M12 reprolysin family of metalloproteinases,
    連結:
  121. Toxicon 45, 969-985.
    連結:
  122. 97. Huang, M. Z., Gopalakrishnakone, P. & Kini, R. M. (1997) Role of enzymaticactivity in the antiplatelet effects of a phospholipase A2 from Ophiophagus hannah
    連結:
  123. snake venom, Life Sci 61, 2211-2217.
    連結:
  124. 98. Aird, S. D. (2005) Taxonomic distribution and quantitative analysis of free purine
    連結:
  125. and pyrimidine nucleosides in snake venoms, Comp Biochem Phys B 140, 109-126.
    連結:
  126. of the Lys49 phospholipase A2 from Agkistrodon piscivorus piscivorus snake venom:
    連結:
  127. from Naja sputatrix: development of a new cytolytic assay, Biochem J 366, 35-43.
    連結:
  128. 101. Song, J., Chung, M. C. M., Xiong, Y., Wang, W. and Pu, X. (1994) Purification,
    連結:
  129. sequence and pharmacological studies of new alpha-neurotoxin from Ophiophagus
    連結:
  130. (2007) Beta-cardiotoxin: a new three-finger toxin from Ophiophagus hannah (king
    連結:
  131. characterization of a neurotoxin from the venom of Ophiophagus hannah (king cobra),
    連結:
  132. Biochem Bioph Res Co 294, 574-578.
    連結:
  133. 2. Fry, B. G., Scheib, H., van der Weerd, L., Young, B., McNaughtan, J., Ramjan, S. F.,Vidal, N., Poelmann, R. E. & Norman, J. A. (2008) Evolution of an arsenal: structural
  134. review of therapeutic practice, South Med J 87, 579-589.
  135. 10. Sasa, M. (1999) Can diet explain intraspecific venom variation? Reply, Toxicon 37,
  136. 259-260.
  137. 11. Daltry, J. C., Ponnudurai, G., Shin, C. K., Tan, N. H., Thorpe, R. S. & Wuster, W.
  138. (1996) Electrophoretic profiles and biological activities: intraspecific variation in the
  139. rhodostoma and Trimeresurus mucrosquamatus, Arch Biochem Biophys 387, 257-264.
  140. variations and molecular phylogeny of venom phospholipases and threefinger toxins of
  141. eastern India Bungarus fasciatus and kinetic analyses of its Pro31 phospholipases A2,
  142. in reproduction, Biol Reprod 66, 859-865.
  143. 16. Kini, R. M. & Evans, H. J. (1997) Phospholipases A2-a complex multifunctional
  144. Mechanism (Kini, R. M. ed), Wiley, London, 1-28.
  145. 17. Yoshizumi, K., Liu, S. Y., Miyata, T., Saita, S., Ohno, M., Iwanaga, S. & Kihara,
  146. 18. Kuchler, K., Gmachl, M., Sippl, M. J. & Kreil, G. (1989) Analysis of the cDNA for
  147. phospholipase A2 from honeybee venom glands. The deduced amino acid sequence
  148. reveals homology to the corresponding vertebrate enzymes, Eur J Biochem 184,
  149. 249-254.
  150. 19. Scott, D. L., Otwinowski, Z., Gelb, M. H. & Sigler, P. B. (1990) Crystal structure
  151. 250, 1563-1566.
  152. 20. McIntosh, J. M., Ghomashchi, F., Gelb, M. H., Dooley, D. J., Stoehr, S. J.,
  153. Giordani, A. B., Naisbitt, S. R. & Olivera, B. M. (1995) Conodipine-M, a novel
  154. Chem 270, 3518-3526.
  155. 22. Kini, R. M. (2005) Structure-function relationships and mechanism of
  156. anticoagulant phospholipase A2 enzymes from snake venoms, Toxicon 45, 1147-1161.
  157. 1749-1800.
  158. 24. Rigoni, M., Schiavo, G., Weston, A. E., Caccin, P., Allegrini, F., Pennuto, M.,
  159. synaptic vesicles, J Cell Sci 117, 3561-3570.
  160. 25. Gutierrez, J. M. & Ownby, C. L. (2003) Skeletal muscle degeneration induced by
  161. 26. Tsai, S. H., Chen, Y. C., Chen, L., Wang, Y. M. & Tsai, I. H. (2007) Binding of a
  162. macrophages, Toxicon 50, 914-922.
  163. 27. Kuch, U., Gumprecht, A. & Melaun, C. (2007) A new species of Temple Pitviper
  164. (Tropidolaemus Wagler, 1830) from Sulawesi, Indonesia (Squamata : Viperidae :Crotalinae), Zootaxa, 1-20.
  165. Vogel, G., David, P., Lutz, M., Van Rooijen, J. & Vidal, N. (2007) Revision of the
  166. Tropidolaemus wagleri-complex (Serpentes : Viperidae : Crotalinae). I. Definition of
  167. included taxa and redescription of Tropidolaemus wagleri (Boie, 1827), Zootaxa, 1-40.
  168. 29. Tan, N. H. & Tan, C. S. (1989) The enzymatic-activities and lethal toxins of
  169. Trimeresurus wagleri (Speckled Pit Viper) Venom, Toxicon 27, 349-357.
  170. 30. Schmidt, J. J. & Weinstein, S. A. (1995) Structure-function studies of waglerin I, a
  171. 1043-1049.
  172. 31. Tsai, M. C., Hsieh, W. H., Smith, L. A. & Lee, C. Y. (1995) Effects of waglerin-I
  173. 363-371.
  174. 32. Weinstein, S. A., Schmidt, J. J., Bernheimer, A. W. & Smith, L. A. (1991)
  175. of waglers pit viper, Trimeresurus wagleri, Toxicon 29, 227-236.
  176. 33. Chijiwa, T., Hamai, S., Tsubouchi, S., Ogawa, T., Deshimaru, M., Oda-Ueda, N.,
  177. Hattori, S., Kihara, H., Tsunasawa, S. & Ohno, M. (2003) Interisland mutation of a
  178. novel phospholipase A2 from Trimeresurus flavoviridis venom and evolution of
  179. 16, 79-113.
  180. 36. McGinnis, S. & Madden, T. L. (2004) BLAST: at the core of a powerful and
  181. 37. Dell, A., Reason, A. J., Khoo, K. H., Panico, M., Mcdowell, R. A. & Morris, H. R.
  182. 230, 108-132.
  183. insights into the functions and N-glycan structures of factor X activator from Russell's
  184. viper venom, FEBS J 275, 3944-3958.
  185. Terminal disialylated multiantennary complex-type N-glycans carried on acutobin
  186. define the glycosylation characteristics of the Deinagkistrodon acutus venom,
  187. 40. Yu, S. Y., Wu, S. W. & Khoo, K. H. (2006) Distinctive characteristics of
  188. 41. Myatt, E. A., Stevens, F. J. & Sigler, P. B. (1991) Effects of pH and calcium ion on
  189. self-association properties of two dimeric phospholipases A2, J Biol Chem 266,
  190. 16331-16335.
  191. Phospholipases A2 from Callosellasma rhodostoma venom gland - cloning and
  192. sequencing of ten of the cDNAs, three-dimensional modelling and chemical
  193. modification of the major isozyme, Eur J Biochem 267, 6684-6691.
  194. of two primitive tree vipers Trimeresurus puniceus and Trimeresurus borneensis, FEBS
  195. J 272, 3015-3025.
  196. 44. Liu, X. L., Wu, X. F. & Zhou, Y. C. (2001) Identification of key residues
  197. responsible for enzymatic and platelet aggregation-inhibiting activities of acidic
  198. 45. Ouyang, C. & Huang, T. F. (1984) Effect of the purified phospholipases A2 from
  199. snake and bee venoms on rabbit platelet-function, Toxicon 22, 705-718.
  200. 46. Lynch, V. J. (2007) Inventing an arsenal: adaptive evolution and
  201. phospholipases A2 of bamboo viper (Trimeresurus stejnegeri): molecular
  202. characterization, geographic variations and evidence of multiple ancestries, Biochem J
  203. 377, 215-223.
  204. prey-specific toxic effects of venom from Sistrurus rattlesnakes, Toxicon 53, 672-679.
  205. structure of two novel echistatin variants and comparison of the ability of echistatin
  206. 513-520.
  207. 50. Kini, R. M. & Evans, H. J. (1997) Effects of phospholipases A2 enzymes on
  208. platelet aggregation. In Venom Phospholipase A2 Enzymes: Structure, Function and
  209. Mechanism (Kini, R. M. ed), Wiley, London, 369-388
  210. 51. Pearson, J. A., Tyler, M. I., Retson, K. V. & Howden, M. E. H. (1993) Studies on
  211. the subunit structure of textilotoxin, a potent presynaptic neurotoxin from the venom of
  212. 54. Kubelka, V., Altmann, F., Staudacher, E., Tretter, V., Marz, L., Hard, K.,
  213. Kamerling, J. P. & Vliegenthart, J. F. (1993) Primary structures of the N-linked
  214. 1193-1204.
  215. 55. Berg, O. G., Gelb, M. H., Tsai, M. D. & Jain, M. K. (2001) Interfacial enzymology:
  216. 56. Joseph, J. S., Valiyaveettil, M., Gowda, D. C. & Kini, R. M. (2003) Occurrence of
  217. 58. Christy, N. P., Phillips, G. B., Dowling, H. G., and Middleton, E. (1967) Poisoning
  218. 59. Veto, T., Price, R., Silsby, J. F. & Carter, J. A. (2007) Treatment of the first known
  219. capacity of antivenin, Toxicon 7, 239-241.
  220. 62. Gold, B. S. & Pyle, P. (1998) Successful treatment of neurotoxic king cobra
  221. 64. Nirthanan, S. & Gwee, M. C. (2004) Three-finger alpha-neurotoxins and the
  222. snake venom curarimimetic neurotoxins, Mol Pharmacol 14, 710-716.
  223. 71. Tan, N. H. & Saifuddin, M. N. (1990) Purification and characterization of two
  224. Int J Bio 22, 481-487.
  225. 73. Huang, M. Z., Gopalakrishnakone, P., Chung, M. C. M. & Kini, R. M. (1997)
  226. venom of Ophiophagus hannah (King cobra): a novel cobra venom enzyme with
  227. analysis of cDNAs encoding two acidic PLA2 from venom of Ophiophagus hannah
  228. (king cobra), Guangxi species, Acta Bioch Bioph Sin 33, 340-344.
  229. 75. Hu, R. Q., Wang, J. L. & Lei, K. J. (1982) Isolation and properties of L-amino acid
  230. oxidase from Ophiophagus hannah venom, Sci Sin B 25, 941-952.
  231. 76. Jin, Y., Lee, W. H., Zeng, L. & Zhang, Y. (2007) Molecular characterization of
  232. L-amino acid oxidase from king cobra venom, Toxicon 50, 479-489.
  233. 77. Guo, X. X., Zeng, L., Lee, W. H., Zhang, Y. & Jin, Y. (2007) Isolation and cloning
  234. 78. He, Y. Y., Liu, S. B., Lee, W. H., Qian, J. Q. & Zhang, Y. (2008) Isolation,
  235. king cobra venom, Peptides 29, 1692-1699.
  236. 79. Lee, W. H., Zhang, Y., Wang, W. Y., Xiong, Y. L. & Gao, R. (1995) Isolation and
  237. (Ophiophagus hannah), Toxicon 33, 1263-1276.
  238. 81. He, Y. Y., Lee, W. H. & Zhang, Y. (2004) Cloning and purification of
  239. 82. Li, J., Zhang, H. Y., Liu, J. & Xu, K. S. (2006) Novel genes encoding six kinds of
  240. three-finger toxins in Ophiophagus hannah (king cobra) and function characterization
  241. of two recombinant long-chain neurotoxins, Biochem J 398, 233-242.
  242. from Ophiophagus hannah (King cobra) venom, Biochim Biophys Acta 317, 85-98.
  243. (Ophiophagus hannah), J Biol Chem 272, 7817-7823.
  244. 85. Roy, A., Zhou, X., Chong, M. Z., D'Hoedt, D., Foo, C. S., Rajagopalan, N.,
  245. Nirthanan, S., Bertrand, D., Sivaraman, J. & Kini, R. M. (2010) Structural and
  246. venom of Ophiophagus hannah (king cobra), J Biol Chem 285, 8302-8315.
  247. 86. Xu, S., Gu, L., Wang, Q., Shu, Y., Song, S. & Lin, Z. (2003) Structure of a king
  248. 87. Tan, N. H. & Hj, M. N. S. (1989) Enzymatic and toxic properties of Ophiophagus
  249. hannah (King Cobra) venom and venom fractions, Toxicon 27, 689-695.
  250. Bergmeyer,Hu, Food Technol-Chicago. 37, 142-143.
  251. (Naja naja atra) venom. 1. Chromatographic separation of crude venom on
  252. 13, 25.
  253. 90. Wang, W. J. & Huang, T. F. (2002) Purification and characterization of a novel
  254. metalloproteinase, acurhagin, from Agkistrodon acutus venom, Thromb Haemost 87,
  255. 641-650.
  256. 91. Dhananjaya, B. L. & D'Souza, C. J. (2011) The pharmacological role of
  257. release of purines-a multitoxin, Basic Clin Pharmacol Toxicol 108, 79-83.
  258. 92. Huang, M. Z., Wang, Q. C. & Liu, G. F. (1993) Effects of an acidic
  259. 94. Finley, E. L., Dillon, J., Crouch, R. K. & Schey, K. L. (1998) Identification of
  260. 95. Fox, J. W. & Serrano, S. M. (2005) Structural considerations of the snake venom
  261. 96. Servent, D., Winckler-Dietrich, V., Hu, H. Y., Kessler, P., Drevet, P., Bertrand, D.
  262. & Menez, A. (1997) Only snake curaremimetic toxins with a fifth disulfide bond have
  263. high affinity for the neuronal alpha-7 nicotinic receptor, J Biol Chem 272, 24279-24286.
  264. 99. Nunez, C. E., Angulo, Y. & Lomonte, B. (2001) Identification of the myotoxic site
  265. synthetic C-terminal peptides from Lys49, but not from Asp49 myotoxins, exert
  266. membrane-damaging activities, Toxicon 39, 1587-1594.
  267. 100. Ma, D., Armugam, A. & Jeyaseelan, K. (2002) Cytotoxic potency of cardiotoxin
  268. hannah venom., Toxicon 32, 537-538.
  269. 102. Rajagopalan, N., Pung, Y. F., Zhu, Y. Z., Wong, P. T., Kumar, P. P. & Kini, R. M.
  270. cobra) venom with beta-blocker activity, FASEB J 21, 3685-3695.
  271. 103. Chang, L. S., Liou, J. C., Lin, S. R. & Huang, H. B. (2002) Purification and
  272. 104. Joubert, F. J. (1977) Snake venoms. The amino-acid sequence of polypeptide
  273. DE-1 from Ophiophagus hannah (king cobra) venom, Hoppe Seylers Z Physiol Chem
  274. 358, 565-574.