透過您的圖書館登入
IP:3.12.36.30
  • 學位論文

單層二硫化鉬沉積於高定向熱解石墨表面之原子排列與電子結構解析

Investigation of the Orientation and Electronic Structure of Monolayer MoS2 on HOPG surface

指導教授 : 林敏聰
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


自從石墨烯出現之後,科學界對於二維材料產生很大的興趣,也開始尋找其他的二維材料,二硫化鉬(MoS2)是這些其他二維材料中,最著名的一個例子,其導電狀態為半導體,因此在產業應用上,二硫化鉬比起石墨烯更俱有潛力。而化學氣相沉積(CVD)是在微米尺度中成長二硫化鉬的原子級平坦的單層薄膜的一種有效方法,並經常使用於工業界。在本研究中,我們用原子力顯微鏡(AFM)和掃描穿隧電子顯微鏡/電子能譜 (STM /STS),對於CVD生長於石墨的二硫化鉬,進行了一系列的基礎研究。 我們知道,當兩個不同的二維晶體重疊時,晶格失配 (lattice mismatch)和相對轉角(relative rotational angle)會使其表面的原子晶格排列,額外產生一種週期性的超結構(Superstructure),這種結構被稱為摩爾紋 (moire pattern)。我們隨機挑選了一些單層二硫化鉬三角形島嶼,並針對其中的摩爾紋做分析,我們發現,這其中存在至少七種不同的超結構,以及,二硫化鉬吸附層和石墨基板晶格之間的相對轉角,通常小於5°,也就是說,二硫化鉬與石墨的晶格之間,是比較偏好於保持平行的。這個結論可以解釋我們在原子力顯微鏡觀察到的現象:二 硫化鉬生長在石墨台階邊緣時,其島嶼的方向性是有所偏好的,而這與二硫化鉬生長在石墨鋸齒狀 (zig-zag) 或扶手椅 (arm-chair) 的邊緣上有關。 另一方面,有許多文獻指出,摩爾紋不只是幾何圖形上的意義,其圖案也可能影響其異質界面的電子結構,這是因為波紋造成的週期性電子局域化,導致額外的長週期電位能,這可能使二硫化鉬產生電子能帶的改變,摩爾紋的出現就好像自由電子在表面遇到了週期性的量子位能阱。在一系列的STS測量中,我們可以得出一些觀察上的結論:雖然同是單層的二硫化鉬,但是不同的超結構卻量到不同的穿隧電子能譜,該能譜可以對應到材料的電子結構,然後,利用原子解析度的STS量測可以得知,即使是在單一的超結構裡,這些能譜也有原子位置的相依性。考慮到二硫化鉬材料的半導體特性,可以推測出,這些測量到的與摩爾紋相關連的電子能階,很有可能同時也是STM探針引導出的量子態。

並列摘要


MoS2, a two-dimensional semiconductor, yields intense interest and great potential for technological applications. Chemical vapor deposition (CVD) is an efficient method of developing micro-meter scale to atomically flat monolayer islands of MoS2. In the present study, MoS2 grown by CVD process on graphite was examined by using atomic force and scanning tunneling microscopy/ spectroscopy (STM/STS) techniques. When the two different 2D crystal overlapping, lattice mismatch and relative rotational angle would lead to have a kind of superstructure, called moir’e pattern. By analyzing the moir’e patterns from several triangular MoS2 islands, we find that, there exists at least seven different superstructures and the relative rotational angles between the MoS2 adlayer and graphite substrate lattices are typically less than 5. According to this analysis, we conclude that since MoS2 grows at graphite step edges, it is the edge structure which controls the orientation of the islands, with whom grows from zig-zag (or armchair) edges tending to orient with one lattice vector parallel (perpendicular) to the step-edge. On the other hand, moir’e pattern could also affect the electronic structure of the heterostructure, due to the corrugation with periodical electron localization leads to additional long period of potential. It generates mini bands and the moir’e spots behave just like moir’e quantum well. In the series of STS measurements, we can conclude that, tunneling spectra of two superstructures of MoS2 are different. The difference is also found between moir’e hill and moir’e valley. These peaks could be related to the position within the single moir’e pattern. After considering the semiconductor property of MoS2, these states can be supposed as tip-induced quantum states, but influenced by moir’e pattern.

參考文獻


[8] Gianluca Giovannetti, Petr A. Khomyakov, Geert Brocks, Paul J. Kelly, and
R Long, and Christopher J Chang. A molecular mos2 edge site mimic for
[73] Chun-I Lu, Christopher John Butler, Jing-Kai Huang, Cheng-Rong Hsing,
Lee, Wenjing Zhang, Kung-Hwa Wei, and Lain-Jong Li. Highly efficient electrocatalytic
Hsu, Kui-Hong Ou Yang, Ching-Ming Wei, Lain-Jong Li, and Minn-Tsong Lin.

延伸閱讀