Title

結合聲電效應之板波與表面聲波感測器研製

Translated Titles

Development of Surface and Lamb Wave Sensors using Acoustoelectric Effect

DOI

10.6342/NTU.2009.00284

Authors

王偉姍

Key Words

聲波感測器 ; 聲電效應 ; 表面波 ; 板波 ; 紫外光 ; Acoustic wave sensor ; Acoustoelectric effect ; Surface acoustic waves ; Lamb waves ; Ultraviolet

PublicationName

臺灣大學應用力學研究所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

博士

Advisor

吳政忠

Content Language

英文

Chinese Abstract

由於體積小、敏感度高,表面聲波與板波感測器已廣泛應用於各式感測,而聲電效應即為其重要感測機制之ㄧ。然由於板波之傳播機制較徹體波或表面聲波複雜許多,現存文獻中仍缺聲電效應與板波波傳之互制行為探討。有鑑於此,本論文分析聲電效應作用下,表面波與板波感測器之特性,並藉以為研製微尺寸板波感測器之基礎。在實驗方面,文中首度研製以氧化鋅奈米結構為感測材料之表面聲波紫外光感測器,更以氧化鋅薄板同時激發板波與作為感測層,製作出一板波紫外光感測器,並分別探討其特性。 本文首先介紹表面聲波傳遞時受聲電效應影響之理論模型,並討論當一壓電半導體材料與自由載子產生交互作用時,其表面波波速、衰減係數與壓電半導體導電度之變化。接著,針對板波,對聲電效應理論模型引入頻散關係,並以此修正之聲電效應理論,探討板波受自由載子影響時之傳播特性。文中以氧化鋅材料為例,研究在聲電效應影響下單層板與多層板板波之傳遞行為。 為了探討聲電效應於表面波傳遞時之影響,本文製作一以氧化鋅奈米柱為感測材料之表面聲波紫外光感測系統,並針對其即時監測之效能、靈敏度、重複性與穩定性做測試與討論。此外,亦首度將量測到的頻率漂移代入聲電效應之理論模型,反算出受紫外光照射一段時間後之氧化鋅導電度,並與理論做一比較與研究。 以第二章板波頻散關係與聲電效應互制之分析為基礎,本文研製一新型板波紫外光感測器。文中,分別製作出氧化鋅/氮化矽/矽結構與氧化鋅/氮化矽薄板之板波紫外光感測器,並對此兩種感測器做量測與比較。研究成果顯示在0.06mWcm-2的紫外光照射下,以氧化鋅/氮化矽薄板為結構之板波紫外光感測器有明顯的波傳損失。表示引入板波頻散關係後,此修正之聲電效應理論可成功設計出感測效能優異之板波感測器。 綜言之,本文提出一分析聲電效應與板波波傳之理論模式,可用於設計單層或多層板板波感測器。在實驗方面,本文基於理論分析設計,亦首度製作出以氧化鋅奈米柱為感測層之表面聲波紫外光感測器以及氧化鋅/氮化矽薄板之板波紫外光感測器。

English Abstract

Surface and Lamb wave sensors, with advantages such as small volume and high sensitivity, have been widely used in various sensing applications. Acoustoelectric effect, which arises from the interaction of acoustic waves and mobile carriers, is one of important sensing mechanisms of acoustic wave sensors. Nevertheless, Lamb wave propagation is much more complex than bulk and surface waves; in the meanwhile, discussions of the influences of acoustoelectric effect on Lamb wave propagation in the literatures remain little thus far. In this regard, characteristics of surface and Lamb wave sensors affected by acoustoelectric interaction are theoretically investigated, which provide a principle and method for designing Lamb wave microsensors for further applications. In addition, a ZnO-nanorods surface acoustic wave UV sensor and a silicon-based ZnO-membrane Lamb wave UV microsensor both employing acoustoelectric effect are realized and demonstrated respectively for the first time. First, an acoustoelectric effect model which has been employed surface wave propagation is briefly introduced. Characteristics of a piezoelectric semiconductor interacting with mobile carriers, such as velocity change, attenuation and conductivity are discussed. In particular, by introducing dispersion relations, a model associated with the acoustoelectric effect is modified to deal with interactions of Lamb waves and mobile carriers. A piezoelectric semiconducting ZnO material is used as a numerical example to discuss Lamb wave propagation influenced by acoustoelectric interaction in a single and multi-layered plate respectively. Next, to reveal the effect of the acoustoelectric interactions on surface wave propagation, a ZnO-nanorod based UV detector system is demonstrated. Characteristics of this UV detector such as real-time response, sensitivity, repeatability and stability are discussed. In addition, ZnO conductivities under 365nm illuminations for a period of time are derived and discussed by substituting measured frequency shifts into the acoustoelectric model for the first time. Finally, based on the analysis of the acoustoelectric-effect model for Lamb wave propagation presented in chapter 2, a novel silicon-based Lamb wave UV microsensor is demonstrated for the first time. For comparison, two types of Lamb wave UV microsensors, based on a ZnO/Si3N4/Si structure and an ultra-thin ZnO/Si3N4 membrane respectively, are realized and discussed. Results show that the ZnO/Si3N4 membrane has obvious acoustic losses when the sensor is under a 0.06mWcm-2 UV illumination, which implies through proper design, a Lamb wave microsensor is a promising candidate for sensing application using acoustoelectric effect. In brief, influences of acoustoelectric effect on surface and Lamb waves are theoretically investigated. For experimental verifications, a ZnO-nanorod based surface-wave UV sensor and a Lamb wave UV detector based on an ultra-thin ZnO/Si3N4 membrane are designed and realized for the first time.

Topic Category 基礎與應用科學 > 物理
工學院 > 應用力學研究所
Reference
  1. 1 J. W. Gardner, V. K. Varadan, and O. O. Awadelkarim, Microsensors, MEMS and Smart Devices (Wiley, New York, 2001).
    連結:
  2. 3 D. S. Ballantine Jr., R. M. White, S. J. Martin et al., Acoustic Wave Sensors: Theory, Design, & Physico-Chemical Applications. (Academic Press, San Diego, 1997).
    連結:
  3. 4 B. Drafts, "Acoustic wave technology sensors," Microwave Theory and Techniques, IEEE Transactions on 49 (4), 795 (2001).
    連結:
  4. 5 F. Hassani, O. Tigli, S. Ahmadi et al., "Integrated CMOS surface acoustic wave gas sensor: design and characteristics," Sensors, 2003. Proceedings of IEEE 2, 1199 (2003).
    連結:
  5. 6 S. Ahmadi, C. Korman, M. Zaghloul et al., "CMOS integrated gas sensor chip using SAW technology," Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium 4, 848 (2003).
    連結:
  6. 7 A. Polh, "A review of wireless SAW sensors," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 47 (2), 317 (2000).
    連結:
  7. 8 B. A. Auld, Acoustic Fields and Waves in Solids. (Krieger Pub Co, Malabar, 1990).
    連結:
  8. 9 L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proc. London Math. Soc. s1-17 (1), 4 (1885).
    連結:
  9. 11 R. M. White and F. W. Voltmer, "Direct piezoelectric coupling to surface elastic waves," Applied Physics Letters 7 (12), 314 (1965).
    連結:
  10. 12 K. A. Ingebrigtsen, "Linear and nonlinear attenuation of acoustic surface waves in a piezoelectric coated with a semiconducting film," Journal of Applied Physics 41 (2), 454 (1970).
    連結:
  11. 13 A. R. Hutson and D. L. White, "Elastic wave propagation in piezoelectric semiconductors," Journal of Applied Physics 33 (1), 40 (1962).
    連結:
  12. 14 A. J. Ricco, S. J. Martin, and T. E. Zipperian, "Surface acoustic wave gas sensor based on film conductivity changes," Sensors and Actuators 8, 319 (1985).
    連結:
  13. 15 J. F. Vetelino, R. K. Lade, and R. S. Falconer, "Hydrogen sulfide surface acoustic wave gas detector," IEEE 1986 Ultrasonics Symposium, 549 (1986).
    連結:
  14. 16 M. Penza and L. Vasanelli, "SAW NOx gas sensor using WO3 thin-film sensitive coating," Sensors and Actuators B: Chemical 41 (1-3), 31 (1997).
    連結:
  15. 18 S. J. Ippolito, A. Ponzoni, K. Kalantar-Zadeh et al., "Layered WO3/ZnO/36degree-LiTaO3 SAW gas sensor sensitive towards ethanol vapour and humidity," Sensors and Actuators B: Chemical 117 (2), 442 (2006).
    連結:
  16. 19 F. C. Huang et al., "A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods," Nanotechnology 20 (6), 065501 (2009).
    連結:
  17. 20 D. Ciplys, R. Rimeika, M. S. Shur et al., "Visible--blind photoresponse of GaN-based surface acoustic wave oscillator," Applied Physics Letters 80 (11), 2020 (2002).
    連結:
  18. 21 E. Monroy et al., "Wide-bandgap semiconductor ultraviolet photodetectors," Semiconductor Science and Technology 18 (4), R33 (2003).
    連結:
  19. 22 P. Sharma and K. Sreenivas, "Highly sensitive ultraviolet detector based on ZnO/LiNbO3 hybrid surface acoustic wave filter," Applied Physics Letters 83 (17), 3617 (2003).
    連結:
  20. 23 F. Calle, T. Palacios, J. Pedros et al., "Surface-acoustic-wave-controlled photodetectors," Proceedings of SPIE 5502, 439 (2004).
    連結:
  21. 24 Nuri W. Emanetoglu, J. Zhu, Y. Chen et al., "Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire," Apply Physics Letters 85 (17), 3702 (2004).
    連結:
  22. 25 Z. Xu, H. Deng, J. Xie et al., "Photoconductive UV detectors based on ZnO films prepared by sol-gel method," Journal of Sol-Gel Science and Technology 36 (2), 223 (2005).
    連結:
  23. 26 D. Y. Song et al., "247nm solar-blind ultraviolet p-i-n photodetector," Journal of Applied Physics 100 (9), 096104 (2006).
    連結:
  24. 27 C. Jiafa et al., "High-performance 4H-SiC-based ultraviolet p-i-n photodetector," Journal of Applied Physics 102 (2), 024505 (2007).
    連結:
  25. 28 L. Ying et al., "High responsivity 4H-SiC based metal-semiconductor-metal ultraviolet photodetectors," Science in China Series G Physics Mechanics and Astronomy 51 (11), 1616 (2008).
    連結:
  26. 29 R. Fabrizio et al., "Electro-optical response of ion-irradiated 4H-SiC Schottky ultraviolet photodetectors," Applied Physics Letters 92 (9), 093505 (2008).
    連結:
  27. 31 Z. A. Shana and F. Josse, "Quartz crystal resonators as sensors in liquids using the acoustoelectric effect," Analytical Chemistry 66 (13), 1955 (2002).
    連結:
  28. 32 R. H. Parmenter, "The acousto-electric effect," Physical Review 89 (5), 990 (1953).
    連結:
  29. 33 C. Kittel, "An electron transfer mechanism for ultrasonic attenuation in metals," Acta Metallurgica 3 (3), 295 (1955).
    連結:
  30. 34 W. P. Mason, "Ultrasonic attenuation due to lattice-electron -interaction in normal conducting metals," Physical Review 97 (2), 557 (1955).
    連結:
  31. 35 R. W. Morse, "Ultrasonic attenuation in metals by electron relaxation," Physical Review 97 (6), 1716 (1955).
    連結:
  32. 36 A. Van Den Beukel, "On the theory of the acousto-electric effect," Applied Scientific Research 5 (1), 459 (1956).
    連結:
  33. 37 G. Weinreich, "Acoustodynamic effects in semiconductors," Physical Review 104 (2), 321 (1956).
    連結:
  34. 38 G. Weinreich, T. M. Sanders, and H. G. White, "Acoustoelectric effect in n-type germanium," Physical Review 114 (1), 33 (1959).
    連結:
  35. 39 A. R. Hutson, "Piezoelectricity and conductivity in ZnO and CdS," Physical Review Letters 4 (10), 505 (1960).
    連結:
  36. 41 W. C. Wang, "Strong Acoustoelectric Effect in CdS," Physical Review Letters 9 (11), 443 (1962).
    連結:
  37. 42 K. Blotekjaer and C. F. Quate, "The coupled modes of acoustic waves and drifting carriers in piezoelectric crystals," Proceedings of the IEEE 52 (4), 360 (1964).
    連結:
  38. 43 J. S. A. Wixforth, M. Wassermeier, and J.P.Kotthaus, "Surface acoustic waves on GaAs/AlGaAs heterostructures," Physical Review B 40 (11) (1989).
    連結:
  39. 44 R. Adler, "Simple theory of acoustic amplification," IEEE Trans. Sonics and Ultrason. su-18 (3) (1971).
    連結:
  40. 45 H. Hanebrekke and K. A. Ingebrigtsen, "Acoustoelectric amplification of surface waves in structure of cadmium-selenide film on lithium niobate," Electronics Letters 6 (16), 520 (1970).
    連結:
  41. 46 I. M. Asher and M. O. Scully, "Acoustoelectric amplification-a phonon-laser approach: theory of a single acoustic mode," Physical Review A 8 (4), 1988 (1973).
    連結:
  42. 47 G. S. Kino, "Acoustoelectric interactions in acoustic-surface-wave devices," Proceedings of the IEEE 64 (5), 724 (1976).
    連結:
  43. 48 J. S. Yang and H. G. Zhou, "Acoustoelectric amplification of piezoelectric surface waves," Acta Mechanica 172 (1), 113 (2004).
    連結:
  44. 49 I. J. Fritz, "Transverse acoustoelectric effect in the separated-medium surface-wave configuration," Journal of Applied Physics 52 (11), 6749 (1981).
    連結:
  45. 50 F. Palma and P. K. Das, "Acoustoelectric interaction in layered semiconductor," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 34 (3), 376 (1987).
    連結:
  46. 51 P. E. Lippens, M. Lannoo, and J. F. Pouliquen, "Calculation of the transverse acoustoelectric voltage in a piezoelectric-extrinsic semiconductor structure," Journal of Applied Physics 66 (3), 1209 (1989).
    連結:
  47. 52 V. A. Vyun, presented at the Ultrasonics Symposium, 1994 Proceedings, 1994 IEEE, 1994 (unpublished).
    連結:
  48. 53 A. O. Govorov, A. V. Kalameitsev, M. Rotter et al., "Nonlinear acoustoelectric transport in a two-dimensional electron system," Physical Review B 62 (4), 2659 (2000).
    連結:
  49. 55 T. M. Niemczyk, S. J. Martin, G. C. Frye et al., "Acoustoelectric interaction of plate modes with solutions," Journal of Applied Physics 64 (10), 5002 (1988).
    連結:
  50. 56 C. H. Yang and C. J. Shue, "Guided waves propagating in a piezoelectric plate immersed in a conductive fluid," IEEE Ultrasonics Symposium, 415 (1998).
    連結:
  51. 57 Y. C. Lee and S. H. Kuo, "Leaky Lamb wave of a piezoelectric plate subjected to conductive fluid loading: Theoretical analysis and numerical calculation," Journal of Applied Physics 100 (7), 073519 (2006).
    連結:
  52. 58 J. Yang, X. Yang, and J. Turner, "Amplification of acoustic waves in laminated piezoelectric semiconductor plates," Archive of Applied Mechanics 74 (3), 288 (2004).
    連結:
  53. 59 D. L. White, "Amplification of ultrasonic waves in piezoelectric semiconductors," Journal of Applied Physics 33 (8), 2547 (1962).
    連結:
  54. 60 S. Urabe, "Voltage controlled monolithic SAW phase shifter and its application to frequency variable oscillator," Sonics and Ultrasonics, IEEE Transactions on 29 (5), 255 (1982).
    連結:
  55. 61 M. Rotter, W. Ruile, G. Scholl et al., "Novel concepts for GaAs/LiNbO3 layered systems and their device applications," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 47 (1), 242 (2000).
    連結:
  56. 62 J. Zhu, Y. Chen, G. Saraf et al., "Voltage tunable surface acoustic wave phase shifter using semiconducting/piezoelectric ZnO dual layers grown on r-Al2O3," Applied Physics Letters 89 (10), 103513 (2006).
    連結:
  57. 63 G. N. Saddik, D. S. Boesch, S. Stemmer et al., "dc electric field tunable bulk acoustic wave solidly mounted resonator using SrTiO[sub 3]," Applied Physics Letters 91 (4), 043501 (2007).
    連結:
  58. 64 M. Streibl, C. Rocke, A. O. Govorov et al., "Novel optoelectronic signal processing via the combination of SAW and semiconductor heterostructures," IEEE Ultrasonics Symposium, 107 (1998).
    連結:
  59. 65 A. Wixforth, "Interaction of surface acoustic waves, electrons, and light," International Journal of High Speed Electronics and Systems (IJHSES) 10 (4), 1193 (2000).
    連結:
  60. 66 M. M. de Lima, Jr., R. Hey, J. A. H. Stotz et al., "Acoustic manipulation of electron--hole pairs in GaAs at room temperature," Applied Physics Letters 84 (14), 2569 (2004).
    連結:
  61. 67 B. Reulet, A. Y. Kasumov, M. Kociak et al., "Acoustoelectric effects in carbon nanotubes," Physical Review Letters 85 (13), 2829 (2000).
    連結:
  62. 68 J. Ebbecke, C. J. Strobl, and A. Wixforth, "Acoustoelectric current transport through single-walled carbon nanotubes," Physical Review B 70 (23), 233401 (2004).
    連結:
  63. 69 V. I. Talyanskii, M. R. Graham, and H. E. Beere, "Acoustoelectric Y-branch switch," Applied Physics Letters 88 (8), 083501 (2006).
    連結:
  64. 70 V. I. Talyanskii and et al., "An acoustoelectric single photon detector," Semiconductor Science and Technology 22 (3), 209 (2007).
    連結:
  65. 72 W. P. Jakubik, "Hydrogen detection by single and bilayer sensor structures in Surface Acoustic Wave system," J. Phys. IV France 129, 117 (2005).
    連結:
  66. 73 F. C. Huang, Y. Y. Chen, and T. T. Wu, "A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods," Nanotechnology 20 (6), 065501 (2009).
    連結:
  67. 74 S. Parmanand, M. Abhai, and K. Sreenivas, "Ultraviolet photoresponse of porous ZnO thin films prepared by unbalanced magnetron sputtering," Applied Physics Letters 80 (4), 553 (2002).
    連結:
  68. 75 D. Ciplys, M. S. Shur, N. Pala et al., "Ultraviolet-sensitive AlGaN-based surface acoustic wave devices," Sensors, 2004. Proceedings of IEEE 3, 1345 (2004).
    連結:
  69. 76 D. Ciplys, M. S. Shur, A. Sereika et al., "Deep-UV LED controlled AlGaN-based SAW oscillator," physica status solidi (a) 203 (7), 1834 (2006).
    連結:
  70. 77 Nuri W. Emanetoglu, J. Zhu, Y. Chen et al., "Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire," Apply Physics Letters 85 (17) (2004).
    連結:
  71. 78 S. Kumar, G. H. Kim, K. Sreenivas et al., "ZnO based surface acoustic wave ultraviolet photo sensor," Journal of Electroceramics 22 (1), 198 (2007).
    連結:
  72. 79 C. C. Ma, T. J. Huang, and J. M. Yu, "Application of slanted finger interdigital transducer surface acoustic wave devices to ultraviolet array photodetectors," Journal of Applied Physics 104 (3), 033528 (2008).
    連結:
  73. 80 Z. A. Shana and F. Josse, "Quartz Crystal Resonators as Sensors in Liquids Using the Acoustoelectric Effect," Analytical Chemistry 66 (13), 1955 (1994).
    連結:
  74. 81 R. Duhamela, L. Roberta, H. Jia et al., "Sensitivity of a Lamb wave sensor with 2 μm AlN membrane," Ultrasonics 44, e893 (2006).
    連結:
  75. 82 J. C. Yu and H. Y. Lin, "Sensing liquid density using resonant flexural plate wave devices with sol–gel PZT thin films," Microsystem Technologies 14 (7), 1073 (2008).
    連結:
  76. 83 N.Yamamoto et al., "Hydrogen Gas Sensor Using Good Characteristics of Lamb Wave," Japanese Journal of Applied Physics 47, 4024 (2008).
    連結:
  77. 85 H. Matthews, Surface Wave Filters: Design, Construction, and Use,. (Wiley, New York, 1977).
    連結:
  78. 88 B. Honein, A. M. B. Braga, P. Barbone et al., "Wave Propagation in Piezoelectric Layered Media with Some Applications," Journal of Intelligent Material Systems and Structures 2 (4), 542 (1991).
    連結:
  79. 89 T. T. Wu and Y. Y. Chen, "Exact analysis of dispersive SAW devices on ZnO/diamond/Si-layeredstructures," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 49 (1), 142 (2002).
    連結:
  80. 90 Y. Y. Chen, "Exact analysis of Lamb waves in piezoelectric membranes with distinct electrode arragements," Japanese Journal of Applied Physics 48, 07GA06 (2009).
    連結:
  81. 91 D. C. Look, "Recent advances in ZnO materials and devices," Materials Science and Engineering B 80 (1-3), 383 (2001).
    連結:
  82. 92 U. Ozgur, I. A. Ya, C. Liu et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics 98 (4), 041301 (2005).
    連結:
  83. 93 C. Campell, Surface Acoustic Wave Devices and Their Signal Processing Applications. (Academic Press, Boston, 1989).
    連結:
  84. 94 R. H. Tancrell and M. G. Holland, "Acoustic surface wave filters," Proceedings of the IEEE 59, 393 (1971).
    連結:
  85. 95 W. R. Smith, H. M. Gerard, J. H. Collins et al., "Analysis of interdigital surface wave transducers by use of an equivalent circuit model," IEEE Transactions on Microwave Theory and Techniques MTT-17, 856 (1969).
    連結:
  86. 96 W. R. Smith, "Experimental distinction between cross-field and in-line three-port circuit models for interdigital transducers," IEEE Transactions on Microwave Theory and Techniques MTT-17, 960 (1974).
    連結:
  87. 99 T. T. Wu, Y. Y. Chen, and T. H. Chou, "A high sensitivity nanomaterial based SAW humidity sensor," Journal of Physics D: Applied Physics 41 (8), 085101 (2008).
    連結:
  88. 100 M. H. Huang, Y. Wu, H. Feick et al., "Catalytic growth of zinc oxide nanowires by vapor transport," Advanced Materials 13 (2), 113 (2001).
    連結:
  89. 101 J. J. Wu and S. C. Liu, "Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition," Advanced Materials 14 (3), 215 (2002).
    連結:
  90. 102 Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of semiconducting oxides," Science 291 (5510), 1947 (2001).
    連結:
  91. 103 M. H. Huang, S. Mao, H. Feick et al., "Room-temperature ultraviolet nanowire nanolasers," Science 292 (5523), 1897 (2001).
    連結:
  92. 104 C. J. Park, D. K. Choi, J. Yoo et al., "Enhanced field emission properties from well-aligned zinc oxide nanoneedles grown on the Au/Ti/n-Si substrate," Applied Physics Letters 90 (8), 083107 (2007).
    連結:
  93. 105 M. Law, L. E. Greene, J. C. Johnson et al., "Nanowire dye-sensitized solar cells," Nat Mater 4 (6), 455 (2005).
    連結:
  94. 106 A. Dorfman, N. Kumar, and J. Hahm, "Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms," Langmuir 22 (11), 4890 (2006).
    連結:
  95. 107 X. Feng, L. Feng, M. Jin et al., "Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films," Journal of the American Chemical Society 126 (1), 62 (2003).
    連結:
  96. 108 D. Ciplys, M. S. Shur, A. Sereika et al., "Deep-UV LED controlled AlGaN-based SAW oscillator," Physica Status Solidi (a) 203 (7), 1834 (2006).
    連結:
  97. 109 S. W. Wenzel and R. M. White, "A multisensor employing an ultrasonic Lamb-wave oscillator," Electron Devices, IEEE Transactions on 35 (6), 735 (1988).
    連結:
  98. 2 Electronics.caResearchNetwork, in Global microsensors market slated for high growth through 2013 (Electronics.ca Publications, 2008).
  99. 10 H. Lamb, "On Waves in an elastic plate," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 93 (648), 114 (1917).
  100. 17 R. Giriunuene and E. Garska, "Acoustoelectric gas sensor with casserite film," Ultragarsas 35 (2), 27 (2000).
  101. 30 J. Kondoh and S. Shiokawa, presented at the Ultrasonics Symposium, 1993. Proceedings., IEEE 1993, 1993 (unpublished).
  102. 40 H. Jaffe, D. Berlincourt, H. Krueger et al., "Piezoelectric Properties of Cadmium Sulfide Crystals," Proceedings of the 14th Annual Symposium on Frequency Control, 19 (1960).
  103. 54 H. J. Kutschera, A. Wixforth, A. V. Kalameitsev et al., presented at the Ultrasonics Symposium, 2001 IEEE, 2001 (unpublished).
  104. 71 J. F. Vetelino, R. Lade, and R. S. Falconer, presented at the IEEE 1986 Ultrasonics Symposium, 1986 (unpublished).
  105. 84 D. Royer and E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation (Springer, 2000).
  106. 86 D. P. Morgan, Surface-Wave Devices for Signal Processing. (Elsevier, Amsterdam, 1991).
  107. 87 Y. Y. Chen, "Theory, Experimet and Applications of Layered SAW Devices," Doctoral Dissertation, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan (In Chinese) (2002).
  108. 97 B. P. Abbott, "A coupling-of-modes model for SAW transducers with arbitrary reflectivity weighting," Ph. D. Dissertation, the Department of Electrical Engineering, the University of Central Florida Orlando, Florida (1989).
  109. 98 S. M. Wang, "The design and measurement of an IF SAW filter," Master Thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan (In Chinese) (2002).
Times Cited
  1. 莊禎祁(2013)。表面聲波元件紫外光及室溫下有機氣體感測器之研發。臺灣大學機械工程學研究所學位論文。2013。1-208。 
  2. 蔡奇儒(2011)。表面聲波元件理論模擬以及溫濕度與紫外光波段感測器研發。臺灣大學機械工程學研究所學位論文。2011。1-235。 
  3. 朱銘賢(2009)。透過電子束蒸鍍法在矽晶片上沉積氧化鋁薄膜以作為高頻氧化鋅薄膜表面聲波元件。大同大學光電工程研究所學位論文。2009。1-78。
  4. 彭彥凱(2010)。利用射頻磁控濺鍍法在具有氧化鋁緩衝層之玻璃基板上沉積氧化鋅薄膜以作為高頻表面聲波之應用。大同大學光電工程研究所學位論文。2010。1-106。
  5. 王子龍(2010)。壓電及高聲速薄膜表面聲波元件之研究。大同大學光電工程研究所學位論文。2010。1-170。