Title

第一部份:設計與合成抗生素添加物以抑制金黃色葡萄球菌素之生成。第二部份:合成Latifolicinin A之衍生物以抑制三重陰性乳癌

Translated Titles

Part I. Design and Synthesis of Antibiotic Additives against Staphylococcus aureus by Inhibition of Staphyloxanthin Formation. Part II. Synthesis of Latifolicinin A Derivatives against Triple-Negative Breast Cancer

Authors

蔡承軒

Key Words

金黃色葡萄球菌 ; 抗生素 ; 乳癌 ; 抑制劑 ; S. aureus ; antibiotics ; breast cancer ; inhibitors

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

博士

Advisor

方俊民

Content Language

繁體中文

Chinese Abstract

第一部份、摘要 金黃色葡萄球菌 (Staphylococcus aureus, SA) 與抗藥性金黃色葡萄球菌 (methicillin-resistant S. aureus, MRSA)之金黃色色素staphyloxanthin (STX, 11)是經由前驅物dehydrosqualene (7)所合成,且STX 具有抗氧化的功能,並且帶有毒性。Gotz 確定了金黃色葡萄球菌合成STX 時,必須經過酵素CrtM (dehydrosqualene synthase)。2005 年, Nizet 證實,藉著干擾STX 的生成能夠弱化細菌足以被宿主的免疫系統清除。CrtM 的共結晶結構在2008 年被發表,提供了在抑制劑的設計上所需的資訊。在CrtM 抑制劑的研究中,大部份是以模擬天然受質farnesyl diphosphate (FPP, 5)為策略,進而達到抑制細菌的目的。本篇論文主要以苯甲酸之衍生物,來模擬以CrtM 催化兩分子的FPP 所合成之中間體presqualene diphosphate (PSPP, 6),藉以發展新型抑制劑。我們合成並測試了一系列具有潛力的CrtM 抑制劑的生物活性(IC50 and MIC) 希望能藉此降低STX 的生成。在此研究中我們發現,當此系列抑制劑並與抗生素(如安比西林)共同針對MRSA 投藥時,能夠降低投藥劑量並有效抑制MRSA 的生長,是相當有趣的發現。 第二部份、摘要 全世界每年約有130 萬名女性罹患乳癌,其中約有42 萬人因此死亡。在台灣,女 性罹患乳癌人數高居癌症的排行榜第四名,每年約有1800 位乳癌病患因此而死。在醫療水準較高的地區,如歐美、日本、台灣等地,乳癌只要能夠在初期被驗出,施以手術,或以藥物治療都有相當好的效果,治癒率非常高。乳癌的檢驗經常利用癌細胞過度表示之受體ER、PgR、HER2 等,然而其中一型的乳癌細胞完全不表現ER、PgR、HER2,因此被稱為三重陰性乳癌(triple-negative breast cancer,TNBC)。由於不易檢測,腫瘤發現的晚,治癒率也隨之下降,另一方面,荷爾蒙及標靶治療上也需要依賴受體,因此三重陰性乳癌不易治療,其罹癌五年死亡率比其他型的乳癌更高,需要更有效的治療方式。本實驗室與中央研究院合作,發現大豆發酵濃縮液「田中寶」之萃取物中的成份latifolicinin A 能夠抑制三重陰性乳癌。我們因此合成及測試一系列latifolicinin A 之酯類與醯胺類衍生物,成功發現數個半數抑制濃度(IC50)小於10 μM 之有效化合物,較latifolicinin A 的抑制性高100 倍以上,除對正常細胞之細胞毒性表現仍待改善外,確實有成為藥品的潛力。

English Abstract

Abstract Part I Staphyloxanthin (STX, 11) is the yellow pigment produced biogenetically from dehydrosqualene (7) in Staphylococcus aureus (SA), including the methicillin-resistant strain (MRSA). STX is a toxin and functions as an antioxidant of SA. Dehydrosqualene synthase(CrtM) is an essential enzyme in the biosynthetic pathway of STX. In 2005, Nizet and coworkers have shown that interference of the STX biosynthesis will weaken bacteria for facile eradication by host immune system. The cocrystal structure of CrtM was published in 2008 to provide useful information for design of the enzyme inhibitors. To construct the inhibitors by mimicking native substrate is a widely applied strategy for development of antibacterial. In another approach, we aimed to design and synthesize a series of benzoic acid derivatives to mimic the transition state in formation of presqualene diphosphate (PSPP, 6) by the CrtM-catalyzed coupling reaction between two farnesyl diphosphonate (FPP, 5) molecules. We also evaluated the bioactivity (IC50 and MIC) of these potential CrtM inhibitors which blocked the STX production. It is interesting to observe that the combined use of the CrtM inhibitor with antibiotics, e.g. ampicillin, has shown synergstic effect to suppress the growth of MRSA. Abstract Part II Every year, about 1.3 million women suffer from breast cancer, and which about 420 thousands patients will die in the whole world. In Taiwan, the number of women suffering from breast cancer ranks fourth highest, and about 1800 patients die each year. As long as breast cancer can be detected at early stage, the cure rate in Europe, America, Japan, and Taiwan is excellent by imposing surgery or drug therapy. Diagnoses of breast cancer are commonly related to the overexpressed receptors, such as, estrogen receptor (ER), progesterone (PgR), and human epidermal growth factor 2 (HER2). However, one subtype of breast cancer cell namely triple-negative breast cancer (TNBC) does not express such receptors. Due to difficulty in detection the cure rate of TNBC decreases is also problematic due to lacking the receptor for hormonal and targeted therapy. Treatment of triple-negative breast cancer, the five-year mortality of TNBC is higher than other subtypes of breast cancer. Effective therapy of TNBC is urgently needed. This research, in cooperation with the Academia Sinica, focus on using latifolicinin A extracted from the fermentation broth of soybean product (FSP), for inhibition of triple-negative breast cancer. We synthesized and tested a series of ester and amide derivatives of latifolicinin A. Some of these compounds were good TNBC inhibitor with IC50 values lower than 10 μM, about 100-fold more potent than latifolicinin A. However, more structural modification is needed to reduce the cytotoxicity to normal cell.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. 1. Ogston, A. Brit. Med. J. 1881, 1, 3694–375. Micro-orgnaisms in surgical.
  2. 2. Smith, G. Brit. J. Surg. 1965, 52, 917–920. Alexander Ogston (1844–1929).
  3. 3. Porter, I. A. Brit. Med. J. 1954, 2, 355–356. Alexander Ogston–bacteriologist.
  4. 4. Lowy, F. D. N. Eng. J. Med. 1998, 339, 520–532. Staphyococcus aureus infections.
  5. 5. Willey, J. M.; Sherwood, L.; Woolverton, C. J. Prescott’s Microbiology. McGraw-Hill,
  6. 2011.
  7. 6. Wilkinson, B. J. Biology. Crossley KB, Archer GL, Eds. The Staphylococci in Human
  8. Disease. New York: Churchill Livingstone, 1997, 1–38.
  9. 7. Marrack, P.; Kappler, J. Science 1990, 248, 705–711. The staphylococcal enterotoxins
  10. and their relatives.
  11. 8. Liu, G. Y.; Nizet, V. Trends Microbiol. 2009, 17, 406–413. Color me bad: microbial
  12. pigments as virulence factors
  13. 9. Marshall, J. H.; Wilmoth, G. J. J. Bacteriol. 1981, 147, 900–913. Pigments of
  14. Staphylococcus aureus, a series of triterpenoid carotenoids.
  15. 10. Marshall, J. H.; Rodwell, E. S. 3rd International Symposium on Carotenoids Other Than
  16. Vitamin A, 1972, 56–57, International Union of Pure and Applied Chemisry, Cluj,
  17. Romania.
  18. 11. Wieland, B.; Feil, C.; Gloria-Maercker, E.; Thumm, G.; Lechner, M.; Bravo, J. M.;
  19. 114
  20. Poralla, K.; Gotz, F. J. Bacteriol. 1994, 176, 7719–7726. Genetic and biochemical
  21. analyses of the biosynthesis of the yellow carotenoid 4,4'-diaponeurosporene of
  22. Staphylococcus aureus.
  23. 12. Pelz, A.; Wieland, K.-P.; Putzbach, K.; Hentschel, P.; Albert, K.; Gotz, F. J. Biol. Chem.
  24. 2005, 280, 32493–32498. Structure and Biosynthesis of Staphyloxanthin from
  25. Staphylococcus aureus.
  26. 13. Liu, G. Y.; Essex, A.; Buchanan, J. T.; Datta, V.; Hoffman, H. M.; Bastiam, J. F.; Fierer,
  27. J.; Nizet, V. J. Exp. Med. 2005, 202, 209–215. Staphylococcus aureus golden pigment
  28. impairs neutrophil killing and promotes virulence through its antioxidant activity.
  29. 14. Novick, R. P. Science 2008, 319, 910–911. Combating Impervious Bugs.
  30. 15. Tenson, T.; Lovmar, M.; Ehrenberg, M. J. Mol. Biol. 2003, 330, 1005–1014. The
  31. mechanism of action of macrolides, lincosamides and streptogramin B reveals the
  32. nascent peptide exit path in the ribosome.
  33. 16. Tran, A. X.; Lester, M. E.; Stead, C. M.; Raetz, C. R. H.; Maskell, D. J.; McGrath, S. C.;
  34. Cotter, R. J.; Trent, M. S. J. Biol. Chem. 2005, 280 28186–28194. Resistance to the
  35. antimicrobial peptide polymyxin requires myristoylation of Escherichia coli and
  36. Salmonella typhimurium lipid A.
  37. 17. Dzidic, S.; Suskovic, J.; Kos, B. Food Technol. Biotechnol. 2008, 46, 11–21. Antibiotic
  38. resistance mechanisms in bacteria: biochemical and genetic aspects.
  39. 115
  40. 18. Tenover, F. C. Am. J. Med. 2006, 119 (Suppl), S3–S10. Mechanisms of antimicrobial
  41. resistance in bacteria.
  42. 19. Straus, S. K.; Hancock, R. E. W. Biochim. Biophys. Acta. 2006, 1758, 1215–1223. Mode
  43. of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison
  44. with cationic antimicrobial peptides and lipopeptides.
  45. 20. What Antimicrobial Resistance Has Taught Us About Horizontal Gene Transfer. Barlow,
  46. M. Horizontal Gene Transfer: Genomes in Flux, 2009, 397–411.
  47. 21. Jevons, M. Brit. Med. J. 1961, 1, 124–125. “Celbenin”-resistant staphylococci.
  48. 22. Raygada, J. L.; Levine, D. P. Infect. Med. 2009, 26 (2). Managing CA-MRSA infections:
  49. current and emerging options.
  50. 23. Raygada, J. L.; Levine, D. P. Clinical, 2009, 2 (2). Methicillin-resistant Staphylococcus
  51. aureus: a growing risk in the hospital and in the community.
  52. 24. Hiramatsu, K,; Aritaka, N.; Hanaki, H.; Hanaki, H.; Kawasaki, S.; Hosoda, Y.; Hori, S.;
  53. Fukuchi, Y.; Kobayashi, I. Lancet 1997, 350, 1670–1673. Dissemination in Japanese
  54. hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin.
  55. 25. Okuma, K.; Iwakawa, K.; Turnidge, J. D.; Grubb, W. B.; Bell, J. M.; O’Brien, F. G.;
  56. Coombs, G. W.; Pearman, J. W.; Tenover, F. C.; Kapi, M.; Tiensasitorn, C.; Ito,T.;
  57. Hiramatsu, K. J. Clin. Microbiol. 2002, 40, 4289–4294. Dissemination of new
  58. methicillin-resistant Staphylococcus aureus clones in the community.
  59. 116
  60. 26. Howden, B. P.; Davies, J. K.; Johnson, P. D.; Stinear, T. P.; Grayson, M. L. Clin.
  61. Microbiol. Rev. 2010, 23, 99–139. Reduced vancomycin susceptibility in Staphylococcus
  62. aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate
  63. strains: resistance mechanisms, laboratory detection, and clinical implications.
  64. 27. Feldman, C.; Anderson, R. Curr. Opin. Infect. Dis. 2009, 22, 137–142. Therapy for
  65. pneumococcal bacteremia: monotherapy or combination therapy?
  66. 28. Rahal, J. J.; Clin. Infect. Dis. 2006, 43(suppl 2), S95–S99. Novel antibiotic combinations
  67. against infections with almost completely resistant Pseudomonas aeruginosa and
  68. Acinetobacter species.
  69. 29. Song, J. Y.; Cheong, H. J.; Lee, J.; Sung, A. K.; Kim, W. J. Int. J. Antimicrob. Agent 2009,
  70. 33, 33–39. Efficacy of monotherapy and combined antibiotic therapy for
  71. carbapenem-resistant Acinetobacter baumannii pneumonia in an immunosuppressed
  72. mouse model.
  73. 30. Tripodi, M.-F.; Durante-Mangoni, E.; Fortunato, R.; Utili, R.; Zarrilli, R. Int. J.
  74. Antimicrob. Agent 2007, 30, 537–540. Comparative activities of colistin, rifampicin,
  75. imipenem and sulbactam/ampicillin alone or in combination against epidemic
  76. multidrug-resistant Acinetobacter baumannii isolate producing OXA-58
  77. carbapenemases.
  78. 31. Miyasaki, Y.; Morgan, M. A.; Chan, R. C.; Nichols, W. S.; Hujer, K. M.; Bonomo, R. A.;
  79. 117
  80. Murthy, A. R. FEMS Microbiol. Lett. 2012, 328, 26–31. In vitro activity of antibiotic
  81. combinations against multidrug resistant strains of Acinetobacter baumannii and the
  82. effects of their antibiotic resistance determinants.
  83. 32. Hall, M. J.; Middleton, R.F.; Westmacott, D. J. Antimicrob. Chemoth. 1982, 11, 427–433.
  84. The fractional inhibitory concentration (FIC) index as a measure of synergy.
  85. 33. Berenbaum, M. C. Pharmacol. Rev. 1989, 41, 93–141. What is synergy?
  86. 34. Choi, J.-G.; Kang, O.-H.; Lee, Y.-S.; Oh, Y.-C.; Chae, H.-S.; Kim, J. H.; Sohn, D.-H.;
  87. Shin, D.-W.; Kwon, D.-Y. J. Microbiol. Biotechnol. 2008, 18, 1848–1852. In vitro
  88. activity of methyl gallate isolated from galla rhois alone and in combination with
  89. ciprofloxacin against clinical isolates of Salmonella.
  90. 35. Meletiadis, J.; Pournaras, S.; Roilides, E.; Walsh, T. J. Antimicrob. Agent Chemother.
  91. 2010, 54, 602–609. Defining fractional inhibitory concentration index cutoffs for
  92. additive interactions based on self drug additive combinations, Monte Carlo simulation
  93. analysis, and in vitro-in vivo correlation data for antifungal drug combinations against
  94. Aspergillus fumigates.
  95. 36. Mendoza, N.; Ravanfar, P.; Satyaprakah, A.; Pillai, S.; Creed, R. Dermatol. Ther. 2009,
  96. 22, 129–142. Existing antibacterial vaccines.
  97. 37. Schaffer, A. C.; Lee, J. C.; Infect. Dis. Clin. North Am. 2009, 23, 153–171.
  98. Staphylococcal vaccines and immunotherapies.
  99. 118
  100. 38. Schmaler, M.; Jann, N. J.; Ferracin, F.; Landmann, R. J. Immunol, 2011, 186, 443–452. T
  101. and B cells are not required for clearing Staphylococcus aureus in systemic infection
  102. despite a strong TLR2−MyD88-dependent T cell activation.
  103. 39. Schaffer, A. C.; Lee, J. C. Int. J. Antimicrob. Agent 2008, 32 (Suppl 1), S71–78.
  104. Vaccination and passive immunisation against Staphylococcus aureus.
  105. 40. Chen, Y.; Liu, B.; Yang, D.; Li, X.; Wen, L.; Zhu, P.; Fu, N. J. Med. Microb. 2011, 60,
  106. 995–1002. Peptide mimics of peptidoglycan are vaccine candidates and protect mice
  107. from infection with Staphylococcus aureus.
  108. 41. Baker, M. Nat Biotechnol, 2006, 24, 1491–1493. Anti-infective antibodies: finding the
  109. path forward.
  110. 42. Hammond, R. K.; White, D. C. J. Bacteriol. 1970, 103, 607–610. Inhibition of
  111. carotenoid hydroxylation in Staphylococcus aureus by mixed-function oxidase
  112. inhibitors.
  113. 43. Harris, G. H.; Jones, E. T. T.; Meinz, M. S.; Nallin-Omstead, M.; Helms, G. L.; Bills, G.
  114. F.; Zink, D.; Wilson, K. E. Tetrahedron Lett. 1993, 34, 5235–5238. Isolation and
  115. structure elucidation of viridiofungins A, B and C.
  116. 44. Hiyoshi, H., Yanagimachi, M.; Ito, M.; Ohtsuka, I.; Yoshida, I.; Saeki, T.; Tanaka H. J.
  117. Lipid Res. 2000, 41, 1136–1144. Effect of ER-27856, a novel squalene synthase inhibitor,
  118. on plasma cholesterol in rhesus monkeys: comparison with
  119. 119
  120. 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors.
  121. 45. Ishihara, T.; Kakuta, H.; Moritani, H.; Ugawa, T.; Sakamoto, S.; Tsukamoto, S.-i.;
  122. Yanagisawa, I. Bioorg. Med. Chem. 2003, 11, 2403–2414. Syntheses and biological
  123. evaluation of novel quinuclidine derivatives as squalene synthase inhibitors
  124. 46. Magnin, D. R., Biller, S. A.; Chen, Y.; Dickson, Jr. J. K.; Fryszman, O. M.; Lawrence, R.
  125. M.; Logan, J. V. H.; Sieber-McMaster, E. S.; Sulsky, R. B.; Traeger, S. C.; Hsieh, D. C.;
  126. Lan, S.-J.; Rinehart, J. K.; Harrity, T. W.; Jolibois, K. G.; Kunselman, L. K.; Rich, L. C.;
  127. Slusarchyk, D. A.; Ciosek, Jr. C. P. J. Med. Chem. 1996, 39, 657–660.
  128. α-Phosphonosulfonic acids: potent and selective inhibitors of squalene synthase.
  129. 47. Fung, A. K. L.; Baker, W. R.; Fakhoury, S.; Stein, H. H.; Cohen, J.; Donner, B. G.;
  130. Garvey, D. S.; Spina, K. P.; Rosenberg, S. H. J. Med. Chem. 1997, 40, 2123–25
  131. (1α,2β,3β,4α)-1,2-Bis[[N-propyl-N-(4-phen- 3,4-dicarboxylic Acid (A-87049): A novel
  132. potent squalene synthase inhibitor.
  133. 48. Shen, W.; Garvey, D. S.; Cohen, J.; Stein, H.; Rosenberg, S. H. Bioorg. Med. Chem. Lett.
  134. 1998, 8, 891–6. Cyclopentadi- and tricarboxylic acids as squalene synthase inhibitors:
  135. syntheses and evaluation.
  136. 49. Poulter, C. D.; Capson, T. L.; Thompson, M. D.; Bard, R. S. J. Am. Chem. Soc. 1989, 111,
  137. 3734–3739. Squalene synthetase, inhibition by ammonium analogs of carbocationic
  138. intermediates in the conversion of presqualene diphosphate to squalene
  139. 120
  140. 50. Baxter, A.; Fitzgerald, B. J.; Hutson, J. L.; McCarthy, A. D.; Motteram, J. M.; Ross, B.
  141. C.; Sapra, M.; Snowden, M. A.; Watson, N. S.; Williams, R. J.; Wrigt, C. J. Biol. Chem.
  142. 1992, 267, 11705–11708. Squalestatin 1, a potent inhibitor of Squalene synthase, which
  143. lowers serum cholesterol in vivo.
  144. 51. Liu, C.-I.; Liu, G. Y.; Song, Y.; Yin, F.; Hensler, M. E.; Jeng, W.-Y.; Nizet, V.; Wang, A.
  145. H.-J.; Oldfield, E. Science 2008, 319, 1391–1394. A cholesterol biosynthesis inhibitor
  146. blocks Staphylococcus aureus virulence.
  147. 52. Song, Y.; Liu, C.-I; Lin, F.-Y.; No, J. H.; Hensler, M.; Liu, Y.-L.; Jeng, W.-Y.; Low, J.;
  148. Liu, G. Y.; Nizet, V.; Wang, A. H.-J.; Oldfield, E. J. Med. Chem. 2009, 52, 3869–3880.
  149. Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in
  150. vitro, in vivo, and crystallographic results.
  151. 53. Song, Y.; Lin, F.-Y.; Yin, F.; Hensler, M.; Poveda, C. A. R.; Mukkamala, D.; Cao, R.;
  152. Wang, H.; Morita, C. T.; Pacanowska, D. G.; Nizet, V.; Oldfield, E. J. Med. Chem. 2009,
  153. 52, 976–988. Phosphonosulfonates are potent, selective inhibitors of dehydrosqualene
  154. synthase and staphyloxanthin biosynthesis in Staphylococcus aureus.
  155. 54. Lin, F.-Y.; Liu, C.-I; Liu, Y.-L.; Zhang, Y.; Wang, K.; Jeng, W.-Y.; Ko, T.-P.; Cao, R.;
  156. Wang, A. H.-J.; Oldfield, E. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 21337–21342.
  157. Mechanism of action and inhibition of dehydrosqualene synthase.
  158. 55. Lin, F.-Y.; Zhang, Y.; Hensler, M.; Liu, Y.-L.; Chow, O. A.; Zhu, W.; Wang, K.; Pang,
  159. 121
  160. R.; Thienphrapa, W.; Nizet, V.; Oldfield, E. ChemMedChem 2012, 7, 561–564. Dual
  161. dehydrosqualene/squalene synthase inhibitors: leads for innate immune system-based
  162. therapeutics.
  163. 56. Zhang, Y.; Lin, F.-Y.; Li, K.; Zhu, W.; Liu, Y.-L.; Cao, R.; Pang, R.; Lee, E.; Axelson, J.;
  164. Hensler, M.; Wang, K.; Molohon, K. J.; Wang, Y.; Mitchell, D. A.; Nizet, V.; Oldfield,
  165. E. ACS Med. Chem. Lett. 2012, 3, 402−406. HIV-1 integrase inhibitor-inspired
  166. antibacterials targeting isoprenoid biosynthesis.
  167. 57. Lin, F.-Y.; Liu, Y.-L.; Li, K.; Cao, R.; Zhu, W.; Axelson, J.; Pang, R.; Oldfield, E. J. Med.
  168. Chem. 2012, 55, 4367−4372. Head-to-head prenyl tranferases: anti-infective drug
  169. targets.
  170. 58. Balakrishnan, S.; Zhao, C.; Zondlo, N. J. J. Org. Chem. 2007, 72, 9834–9837.
  171. Convergent and stereospecific synthesis of molecules containing α-functionalized
  172. guanidiniums via α-guanidino acids.
  173. 59. Castillo-Melendez, J. A.; Golding, B. T. Synthesis 2004, 10, 1655–1663. Optimisation of
  174. the synthesis of guanidines from amines via nitroguanidines using
  175. 3,5-dimethyl-N-nitro-1H-pyrazole-1-carboxamidine.
  176. 60. Maiti, D.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 17423–17429. Orthogonal Cuand
  177. Pd-based catalyst systems for the O- and N-arylation of aminophenols
  178. 61. Ghosh, S.; Kumar, A. S.; Mehta, G. N.; Soundararajan, R. Synthesis 2009, 19,
  179. 122
  180. 3322–3326. A new access to 16-membered macrocycles: synthesis of the model C-O-D
  181. ring system of vancomycin
  182. 62. Kilitoglu, B.; Arndt, H.-D. Synlett 2009, 5, 720–723. Scope of tyrosine O-arylations with
  183. boronic acids: optimized synthesis of an orthogonally protected isodityrosine
  184. 63. Ni, F.; Sun, S.; Huang, C.; Zhao, Y. Green Chem. 2009, 11, 569–573. N-Phosphorylation
  185. of amino acids by trimetaphosphate in aqueous solution – learning from prebiotic
  186. synthesis.
  187. 64. Bonnaventure, I.; Charette, A. B. J. Org. Chem. 2008, 73, 6330–6340. Probing the
  188. importance of the hemilabile site of bis(phosphine) monoxide ligands in the
  189. copper-catalyzed addition of diethylzinc to N-phosphinoylimines: discovery of new
  190. effective chiral ligands.
  191. 65. Gruszecki, W. I.; Strzaŀka, K. Biochim. Biophys. Acta 1991, 1060, 310–314. Does the
  192. xanthophyll cycle take part in the regulation of fluidity of the thylakoid membrane?
  193. 66. Mishra, N. N.; Liu, G. Y.; Yeaman, M. R.; Nast, C. C.; Proctor, R. A.; McKinnell, J.;
  194. Bayer, A. S. Antimicrob. Agents Chemother. 2011, 55, 526–531. Carotenoid-related
  195. alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host
  196. defense peptides.
  197. 67. Mingeot-Leclercq, M.-P.; Glupczynski, Y.; and Tulkens, P. M. Antimicrob. Agents
  198. Chemother. 1999, 43, 727–737. Aminoglycosides: Activity and Resistance
  199. 123
  200. 68. Davies, J.; Wright, G. Trends Microbio. 1997, 5, 234–239. Bacterial resistance to
  201. aminoglycoside antibiotics
  202. 69. Shaw, K. J.; Rather, P. N.; and Miller, G. H. Microbiological Reviews 1993, 57, 138–163.
  203. Molecular genetics of aminoglycoside resistance genes and familial relationships of the
  204. aminoglycoside-modifying Enzymes
  205. 70. Tavassoli, F. A. and Devilee, P., Pathology and Genetics of Tumours of the Breast and
  206. Female Genital Organs. World Health Organisation Classification of Tumours. IARC
  207. Press, Lyon, 2003.
  208. 71. Page, D. L. Am. J. Surg. Pathol. 2003, 27, 832–825. Special types of invasive breast
  209. cancer, with clinical implications.
  210. 72. Weigelt, B.; Horlings, H. M.; Kreike, B.; Hayes, M. M.; Hauptmann, M.; Wessels, L. F.;
  211. de Jong, D.; Van de Vijver, M. J.; Van’t Veer, L. J.; Peterse, J. L. J. Pathol. 2008, 216,
  212. 141–150. Refinement of breast cancer classification by molecular characterization of
  213. histological special types.
  214. 73. Sorlie, T.; Perou, C. M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.;
  215. Eisen, M. B.; van de Rijn, M.; Jeffrey, S. S.; Thorsen, T.; Quist, H.; Matese, J. C.; Brown,
  216. P. O.; Botstein, D.; Eystein Lonning, P.; Borresen-Dale, A. L. Proc. Natl. Acad. Sci. U. S.
  217. A, 2001, 98, 10869–10874. Gene expression patterns of breast carcinomas distinguish
  218. tumor subclasses with clinical implications.
  219. 124
  220. 74. Hammond, M. E.; Hayes, D. F.; Dowsett, M. D.; Allred, C.; Hagerty, K. L.; Badve, S.;
  221. Fitzgibbons, P. L.; Francis, G.; Goldstein, N. S.; Hayes, M.; Hicks, D. G.; Lester, S.;
  222. Love, R.; Mangu, P. B.; McShane, L.; Miller, K.; Osborne, C. K.; Paik, S.; Perlmutter, J.;
  223. Rhodes, A.; Sasano, H.; Schwartz, J. N.; Sweep, F. C.G.; Taube, S.; Torlakovic, E. E.;
  224. Valenstein, P.; Viale, G.;Visscher, D.; Wheeler, T.; Williams, R. B.; Wittliff, J. L.; Wolff,
  225. A. C. J. Clin. Oncol. 2010. 28, 2784–2795. American society of clinical
  226. oncology/college of american pathologists guideline recommendations for
  227. immunohistochemical testing of estrogen and progesterone receptors in breast cancer.
  228. 75. Burstein, H. J.; Prestrud, A. A.; Seidenfeld, J.; Anderson, H.; Buchholz, T. A.; Davidson,
  229. N. E.; Gelmon, K. E.; Giordano, S. H.; Hudis, C. A.; Malin, J.; Mamounas, E. P.;
  230. Rowden, D.; Solky, A. J.; Sowers, M. R.; Stearns, V.; Winer, E. P.; Somerfield, M. R.;
  231. Griggs, J. J. J. Clin. Oncol. 2010, 28, 3784–3796. American society of clinical oncology
  232. clinical practice guideline: update on adjuvant endocrine therapy for women with
  233. hormone receptor-positive breast cancer.
  234. 76. Dowsett, M.; Allred, C.; Knox, J.; Quinn, E.; Salter, J.; Wale, C.; Cuzick, J.; Houghton,
  235. J.; Williams, N.; Mallon, E.; Bishop, H.; Ellis, I.; Larsimont, D.; Sasano, H.; Carder, P.;
  236. Cussac, A. L.; Knox, F.; Speirs, V.; Forbes, J.; Buzdar, A. J. Clin. Oncol. 2008, 26,
  237. 1059–1065. Relationship between quantitative estrogen and progesterone receptor
  238. expression and human epidermal growth factor receptor 2 (HER-2) status with
  239. 125
  240. recurrence in the Arimidex, Tamoxifen, Alone or in Combination trial.
  241. 77. Nofech-Mozes, S.; Trudeau, M.; Kahn, H. K.; Dent, R.; Rawlinson, E.; Sun, P.; Narod, S.
  242. A.; Hanna, W. M. Breast Cancer Res. Treat. 2009, 118, 131–137. Patterns of recurrence
  243. in the basal and non-basal subtypes of triple-negative breast cancers.
  244. 78. Keshaviah, A.; Dellapasqua, S.; Rotmensz, N.; Lindtner, J.; Crivellan, D.; Collins, J.;
  245. Colleoni, M.; Thurlimann, B.; Mendiola, C.; Aebi, S.; Price, K. N.; Pagani, O.;
  246. Simoncini, E.; Castiglione Gertsch, M.; Gelber, R. D.; Coates, A. S.; and Goldhirsch, A.
  247. Annals of Oncology, 2007, 18, 701–708. CA15-3 and alkaline phosphatase as predictors
  248. for breast cancer recurrence: a combined analysis of seven International Breast Cancer
  249. Study Group trials.
  250. 79. Yamamoto, S.; Chishima, T.; Adachi, S.; Harada, F.; Toda, Y.; Arioka, H.; Hasegawa, N.;
  251. and Kakuta, Y. Cancer Biomarkers, 2014, 14, 203–206. Serum p53 antibody in breast
  252. cancer.
  253. 80. Laginha, K. M.; Verwoert, S.; Charrois, G. J. R.; Allen, T. M. Clin. Cancer Res. 2005, 11,
  254. 6944–6949. Determination of doxorubicin levels in whole tumor and tumor nuclei in
  255. murine breast cancer tumors
  256. 81. Wani, M.; Taylor, H.; Wall, M.; Coggon, P.; McPhail, A. J. Am. Chem. Soc. 1971, 93,
  257. 2325–2327. Plant antitumor agents. VI. The isolation and structure of taxol, a novel
  258. antileukemic and antitumor agent from Taxus brevifolia.
  259. 126
  260. 82. 財團法人台灣癌症基金會http://www.canceraway.org.tw/page.asp?IDno=532
  261. 83. Carey, L. A.; Dees, E. C.; Sawyer, L.; Gatti, L.; Moore, D. T.; Collichio, F.; Ollila, D.
  262. W.; Sartor, C. I.; Graham, M. L.; Perou, C. M. Clin. Cancer. Res. 2007, 13, 2329–2334.
  263. The tripple negative paradox: primary tumor chemosensitivity of breast cancer subtypes.
  264. 84. Hugh, J.; Hanson, J.; Cheang, M. C.; Nielsen, T. O.; Perou, C. M.; Dumontet, C.; Reed,
  265. J.; Krajewska, M.; Treilleux, I.; Rupin, M.; Magherini, E.; Mackey, J.; Martin, M.; Vogel,
  266. C. J. Clin. Oncol. 2009, 27, 1168–1176. Breast cancer subtypes and response to
  267. docetaxel in node-positive breast cancer: use of an immunohistochemical definition in
  268. the BCIRG 001 trial.
  269. 85. Wang, S.; Yang, H.; Tong, F.; Zhang, J.; Yang, D.; Liu, H.; Cao, Y.; Liu, P.; Zhou, P.;
  270. Cheng, L.; Liu, M.; Guo, J. Jpn. J. Canc. Chemother. 2009, 36, 255–258. Response to
  271. neoadjuvant therapy and disease free survival in patients with triple-negative breast
  272. cancer.
  273. 86. Bianchi, V.; Borella, S.; Calderazzo, F.; Ferraro, P.; Chieco Bianchi, L.; Reichard, P. Proc.
  274. Natl. Acad. Sci. U. S. A. 1994, 91, 8403–8407. Inhibition of ribonucleotide reductase by
  275. 2'-substituted deoxycytidine analogs: possible application in AIDS treatment.
  276. 87. Merriman, R. L.; Hertel, L. W.; Schultz, R. M.; Houghton, P. J.; Houghton, J. A.;
  277. Rutherford, P. G.; Tanzer, L. R.; Boder, G. B.; Grindey, G. B.; Invest. New Drugs 1996,
  278. 14, 243–247. Comparison of the antitumor activity of gemcitabine and ara-C in a panel
  279. 127
  280. of human breast, colon, lung and pancreatic xenograft models.
  281. 88. Cerqueira, N. M. F. S. A.; Fernandes, P. A.; Ramos, M. J. Chem. Eur. J. 2007, 13,
  282. 8507–8515. Understanding ribonucleotide reductase inactivation by gemcitabine
  283. 89. Sirohi, B.; Arnedos, M.; Popat, S.; Ashley, S.; Nerurkar, A.; Walsh, G.; Johnston, S.;
  284. Smith, I. E. Ann. Oncol. 2008, 19, 1847–1852. Platinum-based chemotherapy in
  285. triple-negative breast cancer.
  286. 90. Tan, A. R.; Swain, S. M. Cancer J. 2008, 14, 343–351. Therapeutic strategies for
  287. triple-negative breast cancer.
  288. 91. D’Amours, D.; Desnoyers, S.; D’Silva, I.; Poirier, G. G. Biochem. J. 1999, 342, 249–268.
  289. Poly(ADPribosyl)ation reactions in the regulation of nuclear functions.
  290. 92. Fong, P. C.; Boss, D. S.; Yap, T. A.; Tutt, A.; Wu, P.; Mergui-Roelvink, M.; Mortimer,
  291. P.; Swaisland, H.; Lau, A.; O’Connor, M. J.; Ashworth, A.; Carmichael, J.; Kaye, S. B.;
  292. Schellens, J. H.; de Bono, J. S. N. Engl. J. Med. 2009, 361, 123–134. Inhibition of
  293. poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers.
  294. 93. Cheang, M. C.; Voduc, D.; Bajdik, C.; Leung, S.; McKinney, S.; Chia, S. K.; Perou, C.
  295. M.; Nielsen, T. O. Clin. Cancer Res. 2008, 14, 1368–1376. Basal-like breast cancer
  296. defined by five biomarkers has superior prognostic value than triple-negative phenotype.
  297. 94. Collins, L. C.; Martyniak, A.; Kandel, M. J.; Stadler, Z. K.; Masciari, S.; Miron, A.;
  298. Richardson, A. L.; Schnitt, S. J.; Garber, J. E. Am. J. Surg. Pathol. 2009, 33, 1093–1097.
  299. 128
  300. Basal Cytokeratin and epidermal growth factor receptor expression are not predictive of
  301. BRCA1 mutation status in women with triple-negative breast cancers.
  302. 95. Meche, A.; Cimpean, A. M.; Raica, M. Rom. J. Morphol. Embryol. 2009, 50, 217–221.
  303. Immunohistochemical expression and significance of epidermal growth factor receptor
  304. (EGFR) in breast cancer.
  305. 96. Green, M. D.; Francis, P. A.; Gebski, V.; Harvey, V.; Karapetis, C.; Chan, A.; Snyder, R.;
  306. Fong, A.; Basser, R.; Forbes, J. F. Ann. Oncol. 2009, 20, 1813–1817. Gefitinib treatment
  307. in hormone-resistant and hormone receptor-negative advanced breast cancer.
  308. 97. Bartholomeusz, C.; Yamasaki, F.; Saso, H.; Kurisu, K.; Hortobagyi, G. N.; Ueno, N. T. J.
  309. Cancer 2011, 2, 435–442. Gemcitabine overcomes erlotinib resistance in
  310. EGFR-overexpressing cancer cells through downregulation of Akt.
  311. 98. Takabatake, D.; Fujita, T.; Shien, T.; Kawasaki, K.; Taira, N.; Yoshitomi, S.;
  312. Takahashi, H.; Ishibe, Y.; Ogasawara, Y.; Doihara, H. Int. J. Cancer 2006, 120, 181–188.
  313. Tumor inhibitory effect of gefitinib (ZD1839, Iressa) and taxane combination therapy in
  314. EGFR-overexpressing breast cancer cell lines (MCF7/ADR, MDA-MB-231).
  315. 99. Fournier, D. B.; Erdman, J. W. Jr.; Gordon, G. B. Cancer Epidemiol. Biomarkers Prev.
  316. 1998, 7, 1055–1065. Soy, its components, and cancer prevention: a review of the in vitro,
  317. animal, and human data.
  318. 100. Messina, M. J.; Persky, V.; Setchell, K. D.; Barnes, S. Nutr. Cancer 1994, 21, 113–131.
  319. 129
  320. Soy intake and cancer risk: a review of the in vitro and in vivo data.
  321. 101. Nout, M. J. R.; Rombouts, F. M. J. Appl. Bacteriol. 1990, 69, 609–633. Recent
  322. developments in tempe research.
  323. 102. Hutchins, A. M.; Slavin, J. L.; Lampe, J. W. J. Am. Diet Assoc. 1995, 95, 545–551.
  324. Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented
  325. and unfermented soy products.
  326. 103. Chang, W. H.; Liu, J. J.; Chen, C. H.; Huang, T. S.; Lu, F. J. Nutr. Cancer 2002, 43,
  327. 214–226. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by
  328. fermented soy milk.
  329. 104. Yang, Z.; Liu, S.; Chen, X.; Chen, H.; Huang, M.; Zheng, J. Cancer Res. 2000, 60,
  330. 505–509. Induction of apoptotic cell death and in vivo growth inhibition of human
  331. cancer cells by a saturated branched-chain fatty acid, 13-methyltetradecanoic acid.
  332. 105. Ohta, T.; Nakatsugi, S.; Watanabe, K.; Kawamori, T.; Ishikawa, F.; Morotomi, M.; Sugie,
  333. S.; Toda, T.; Sugimura, T.; Wakabayashi, K. Carcinogenesis 2000, 21, 937–941.
  334. Inhibitory effects of Bifidobacterium-fermented soy milk on
  335. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-induced rat mammary carcinogenesis,
  336. with a partial contribution of its component isoflavones.
  337. 106. Baggott, J. E.; Ha, T.; Vaughn, W. H.; Juliana, M. M.; Hardin, J. M.; Grubbs, C. J. Nutr.
  338. Cancer 1990, 14, 103–109. Effect of miso (Japanese soybean paste) and NaCl on
  339. 130
  340. DMBA-induced rat mammary tumors.
  341. 107. National Institutes of Health, National Toxicology Program, technical report series 438,
  342. Toxicology and carcinogenesis studies of benzethonium chloride, 1995.
  343. 108. Beck, I. T.; Pinter, E.; Mc, K. R.; Griff, H. Can. J. Biochem. Physiol. 1960, 38, 25–32.
  344. The selective proteolytic enzyme inhibitory action of benzethonium chloride.
  345. 109. Takeoka, G.; Dao, L.; Wong, R. Y.; Lundin, R.; Mahoney, N. J. Agric. Food Chem. 2001,
  346. 49, 3316–3320. Identification of benzethonium chloride in commercial grapefruit seed
  347. extracts.
  348. 110. Siddiqui, B. S.; Perwaiz, S.; Begum, S. Natural Product Research 2006, 20, 131–137.
  349. Studies on the chemical constituents of the fruits of Cordia latifolia.
  350. 111. Xu, L. X.; Feng, N.; Xue, J. H.; Wu, P.; Wei, X. Y.; Journal of Tropical and subtropical
  351. Botany 2008, 16, 140–143. Phenolic acids from metarhizium sp. SC0924 and their
  352. antifungal activity against Peronophythora lichii.
  353. 112. Parmenon, C.; Guillard, J.; Caignard, D.-H.; Hennuyer, N.; Staels, B.; Audinot-Bouchez,
  354. V.; Boutin, J.-A.; Dacquet, C.; Ktorzae, A.; Viaud-Massuard, M.-C. Bioorg. Med. Chem.
  355. Lett. 2008, 18, 1617–1622. 4,4-Dimethyl-1,2,3,4-tetrahydroquinoline-based PPARα/γ
  356. agonists. Part I: Synthesis and pharmacological evaluation.
  357. 113. Munde, T.; Brand, S.; Hidalgo, W.; Maddula, R. K.; Svatos, A.; Schneider, B.
  358. Phytochemistry, 2013, 91, 165–176. Biosynthesis of tetraoxygenated
  359. 131
  360. phenylphenalenones in Wachendorfia thyrsiflora.
  361. 114. Wang, Z.; La, B.; Fortunak, J. M.; Meng, X.-J.; Kabalka, G. W. Tetrahedron Lett. 1998,
  362. 39, 5501–5504. Enantioselective synthesis of α-hydroxy carboxylic acids: Direct
  363. conversion of α-oxocarboxylic acids to enantiomerically enriched α-hydroxy carboxylic
  364. acids via neighboring group control
  365. 115. Matsuda, H.; Okino, T.; Murakami, M.; Yamaguchi, K. Tetrahedron, 1996, 52,
  366. 14501–14506. Aeruginosins 102-A and B, new thrombin inhibitors from the
  367. cyanobacterium Microcystis viridis (NIES-102)
  368. 116. Valls, N.; Vallribera, M.; Lopez-Canet, M.; Bonjoch, J. J. Org. Chem. 2002, 67,
  369. 4945–4950. Synthesis of microcin SF608
  370. 117. Olivares-Xometl, O.; Likhanova, N. V.; Dominguez-Aguilar, M. A.; Arce, E.; Dorantes,
  371. H.; Arellanes-Lozada, P. Mater. Chem. Phys. 2008, 110, 344–351. Synthesis and
  372. corrosion inhibition of α-amino acids alkylamides for mild steel in acidic environment