Title

經皮神經電刺激作用於主要動作皮質區對大腦皮質興奮性和動作表現的效果

Translated Titles

Effects of Transcutaneous Electrical Nerve Stimulation on Cortical Excitability and Motor Performance in the Primary Motor Cortex

DOI

10.6342/NTU.2013.00397

Authors

廖奕瑄

Key Words

經皮神經電刺激 ; 經顱磁刺激 ; 皮質興奮性 ; transcutaneous electrical nerve stimulation ; transcranial magnetic stimulation ; cortical excitability

PublicationName

臺灣大學物理治療學研究所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

陸哲駒

Content Language

英文

Chinese Abstract

前言:近來經顱磁刺激、經顱直流電刺激和經顱交流電刺激等非侵入性腦刺激在研究介入和臨床評估上都成為一項有力的工具。目前關於交流電刺激的研究認為交流電刺激會影響皮質的活性,但其相關應用與機轉依然不清楚。由於交流電刺激的技術規格和傳統刺激神經肌肉的經皮神經電刺激相似,因此可進一步了解使用經皮神經電刺激作為一種非侵入性腦刺激器的可能性。目的:本研究將觀察大腦主要動作皮質區之皮質興奮性和手部動作表現改變情形在提供二十分鐘、三種經皮神經電刺激(120赫茲、15赫茲和偽電流刺激)介入後的改變。方法:收集平均年齡為22.45±1.17歲的二十四位健康受試者,並給予隨機安排次序的120赫茲、15赫茲和偽電流刺激三次經皮神經電刺激,利用經顱磁刺激器和手部動作表現的評估,觀察其介入前、介入後和追蹤刺激後三十分鐘、六十分鐘的皮質興奮性之改變和動作上的影響。結果:介入二十分鐘經皮神經電刺激後,所有受試者皆無不適的情形。15赫茲的刺激對於動作誘發電位(motor evoked potential, MEP)、標準化動作誘發電位(normalized motor evoked potential, normalized MEP)、二毫秒差的皮質內抑制(2ms of intracortical inhibition, ICI2)和十五毫秒的皮質內興奮(15ms of intracortical facilitation, ICF15)皆有顯著上升的表現(p=0.029, 0.002, 0.002, <0.001),且追蹤30至60分鐘後,皆顯著下降(p=0.005, <0.001, 0.038, 0.001);120赫茲的刺激則只有標準化動作誘發電位(normalized MEP)在介入後有顯著上升(p=0.007),動作誘發電位(MEP)和標準化動作誘發電位(normalized MEP)在追蹤60分鐘後顯著下降的表現(p=0.026, 0.034)。另外,無論何種刺激,動作表現的結果皆無顯著差異(p>0.05)。結論:本研究證實經皮神經電刺激作為一調節皮質興奮性工具的安全性和可行性,二十分鐘的刺激對於大腦主要動作皮質區之皮質興奮性有顯著的改變,且15赫茲的刺激效果較120赫茲和偽電流刺激的效果佳,其結果將可提供更多有效之臨床試驗,以利於未來再回饋至臨床復健的訓練上。

English Abstract

Background: Recently, transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) become powerful tools for both basic research and clinical application. Researches revealed that AC stimulation might alter the cortical excitability. However the mechanism of this phenomenon was still unclear. Although the stimulator to provide AC stimulation has the similar technological specification for a traditional neuromuscular stimulator, like transcutaneous electrical nerve stimulation (TENS), it should be clarified the possibility to use a TENS as a noninvasive brain stimulator. Purpose: The purpose of this study was to evaluate the cortical excitability and motor performance after 20 minutes TENS intervention by 15, 120Hz and sham stimulation applied on primary motor cortex. Methods: Twenty-four healthy adults, mean age of 22.45±1.17 years old, were participated in this study. Three different TENS interventions (15, 120Hz and sham stimulation) was provided in random order. Measurements including cortical excitability and motor performance by TMS and motor task of finger pinch will be evaluated at baseline, after intervention and follow-up (30 and 60 minutes after stimulation). Results: After intervention, motor evoked potential (MEP), normalized MEP, 2ms of intracortical inhibition (ICI2) and 15ms of intracortical facilitation (ICF15) immediately significantly increased (p=0.029, 0.002, 0.002, <0.001) and then significantly decreased at follow-up (p=0.005, <0.001, 0.038, 0.001) in 15Hz stimulation group. Only normalized MEP found significant increase immediately (p=0.007) and MEP and normalized MEP showed significant decrease (p=0.026, 0.034) after 60 minutes follow-up in 120Hz stimulation group. No significant change about motor performance was revealed in any kind of stimulation. Conclusion: The results of our study confirmed that TENS could be a safe and feasible tool for cortical excitability modulation. Twenty minutes TENS stimulation could significantly change the cortical excitability. The effect of 15 Hz TENS stimulation was more significant than 120 Hz. The results would provide some evidence for clinical trials in order to advance clinical training on rehabilitation in the future.

Topic Category 醫藥衛生 > 醫藥總論
醫學院 > 物理治療學研究所
Reference
  1. 1. Purpura DP, McMurtry JG. Intracellular Activities And Evoked Potential Changes During Polarization Of Motor Cortex. J Neurophysiol 1965;28:166-185.
    連結:
  2. 2. Antal A, Nitsche MA, Paulus W. Transcranial direct current stimulation and the visual cortex. Brain Res Bull 2006;68:459-463.
    連結:
  3. 3. Fregni F, Boggio PS, Santos MC, et al. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease. Mov Disord 2006;21:1693-1702.
    連結:
  4. 4. Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 2006;5:708-712.
    連結:
  5. 5. Hansen N. Action mechanisms of transcranial direct current stimulation in Alzheimer's disease and memory loss. Front Psychiatry 2012;3:48.
    連結:
  6. 6. Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 2010;75:2176-2184.
    連結:
  7. 7. Zaghi S, Acar M, Hultgren B, Boggio PS, Fregni F. Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation. Neuroscientist 2010;16:285-307.
    連結:
  8. 8. Zimerman M, Heise KF, Hoppe J, Cohen LG, Gerloff C, Hummel FC. Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke 2012;43:2185-2191.
    連結:
  9. 9. Nekhendzy V, Fender CP, Davies MF, et al. The antinociceptive effect of transcranial electrostimulation with combined direct and alternating current in freely moving rats. Anesth Analg 2004;98:730-737, table of contents.
    連結:
  10. 10. Nekhendzy V, Lemmens HJ, Tingle M, Nekhendzy M, Angst MS. The analgesic and antihyperalgesic effects of transcranial electrostimulation with combined direct and alternating current in healthy volunteers. Anesth Analg 2010;111:1301-1307.
    連結:
  11. 11. Kanai R, Chaieb L, Antal A, Walsh V, Paulus W. Frequency-dependent electrical stimulation of the visual cortex. Curr Biol 2008;18:1839-1843.
    連結:
  12. 12. Antal A, Boros K, Poreisz C, Chaieb L, Terney D, Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul 2008;1:97-105.
    連結:
  13. 13. Moliadze V, Antal A, Paulus W. Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J Physiol 2010;588:4891-4904.
    連結:
  14. 14. Zaghi S, de Freitas Rezende L, de Oliveira LM, et al. Inhibition of motor cortex excitability with 15Hz transcranial alternating current stimulation (tACS). Neurosci Lett 2010;479:211-214.
    連結:
  15. 15. Chaieb L, Antal A, Paulus W. Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability. Restor Neurol Neurosci 2011;29:167-175.
    連結:
  16. 16. Moliadze V, Atalay D, Antal A, Paulus W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul 2012;5:505-511.
    連結:
  17. 17. Cameron M, Lonergan E, Lee H. Transcutaneous electrical nerve stimulation (TENS) for dementia. Cochrane Database Syst Rev 2003:CD004032.
    連結:
  18. 18. Ardolino G, Bossi B, Barbieri S, Priori A. Non-synaptic mechanisms underlie the after-effects of cathodal transcutaneous direct current stimulation of the human brain. J Physiol 2005;568:653-663.
    連結:
  19. 19. Boggio PS, Khoury LP, Martins DC, Martins OE, de Macedo EC, Fregni F. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J Neurol Neurosurg Psychiatry 2009;80:444-447.
    連結:
  20. 20. Halko MA, Datta A, Plow EB, Scaturro J, Bikson M, Merabet LB. Neuroplastic changes following rehabilitative training correlate with regional electrical field induced with tDCS. Neuroimage 2011;57:885-891.
    連結:
  21. 21. Habib D, Dringenberg HC. Alternating low frequency stimulation of medial septal and commissural fibers induces NMDA-dependent, long-lasting potentiation of hippocampal synapses in urethane-anesthetized rats. Hippocampus 2009;19:299-307.
    連結:
  22. 22. Groppa S, Oliviero A, Eisen A, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2012;123:858-882.
    連結:
  23. 23. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 2009;120:2008-2039.
    連結:
  24. 24. Walsh V, Cowey A. Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 2000;1:73-79.
    連結:
  25. 25. Rossini PM, Pauri F. Neuromagnetic integrated methods tracking human brain mechanisms of sensorimotor areas 'plastic' reorganisation. Brain Res Brain Res Rev 2000;33:131-154.
    連結:
  26. 26. Kidgell DJ, Pearce AJ. What has transcranial magnetic stimulation taught us about neural adaptations to strength training? A brief review. J Strength Cond Res 2011;25:3208-3217.
    連結:
  27. 27. Tsutsumi R, Hanajima R, Hamada M, et al. Reduced interhemispheric inhibition in mild cognitive impairment. Exp Brain Res 2012;218:21-26.
    連結:
  28. 28. Farzan F, Barr MS, Levinson AJ, et al. Reliability of long-interval cortical inhibition in healthy human subjects: a TMS-EEG study. J Neurophysiol 2010;104:1339-1346.
    連結:
  29. 29. Brighina F, Palermo A, Fierro B. Cortical inhibition and habituation to evoked potentials: relevance for pathophysiology of migraine. J Headache Pain 2009;10:77-84.
    連結:
  30. 30. Hallett M. Transcranial magnetic stimulation: a primer. Neuron 2007;55:187-199.
    連結:
  31. 31. Butler AJ, Wolf SL. Putting the brain on the map: use of transcranial magnetic stimulation to assess and induce cortical plasticity of upper-extremity movement. Phys Ther 2007;87:719-736.
    連結:
  32. 32. Malcolm MP, Triggs WJ, Light KE, Shechtman O, Khandekar G, Gonzalez Rothi LJ. Reliability of motor cortex transcranial magnetic stimulation in four muscle representations. Clin Neurophysiol 2006;117:1037-1046.
    連結:
  33. 33. Lo YL, Chan LL, Lim W, et al. Systematic correlation of transcranial magnetic stimulation and magnetic resonance imaging in cervical spondylotic myelopathy. Spine (Phila Pa 1976) 2004;29:1137-1145.
    連結:
  34. 34. Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol 2003;2:145-156.
    連結:
  35. 35. Valls-Sole J, Valldeoriola F. Neurophysiological correlate of clinical signs in Parkinson's disease. Clin Neurophysiol 2002;113:792-805.
    連結:
  36. 36. Chen R, Kumar S, Garg RR, Lang AE. Impairment of motor cortex activation and deactivation in Parkinson's disease. Clin Neurophysiol 2001;112:600-607.
    連結:
  37. 37. Kujirai T, Caramia MD, Rothwell JC, et al. Corticocortical inhibition in human motor cortex. J Physiol 1993;471:501-519.
    連結:
  38. 38. Neuling T, Rach S, Herrmann CS. Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Hum Neurosci 2013;7:161.
    連結:
  39. 39. Paulus W. Transcranial electrical stimulation (tES - tDCS; tRNS, tACS) methods. Neuropsychol Rehabil 2011;21:602-617.
    連結:
  40. 40. Zaehle T, Rach S, Herrmann CS. Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG. PLoS One 2010;5.
    連結:
  41. 41. Feurra M, Bianco G, Santarnecchi E, Del Testa M, Rossi A, Rossi S. Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci 2011;31:12165-12170.
    連結:
  42. 42. Schutter DJ, Hortensius R. Brain oscillations and frequency-dependent modulation of cortical excitability. Brain Stimul 2011;4:97-103.
    連結:
  43. 43. Kanai R, Paulus W, Walsh V. Transcranial alternating current stimulation (tACS) modulates cortical excitability as assessed by TMS-induced phosphene thresholds. Clin Neurophysiol 2010;121:1551-1554.
    連結:
  44. 44. Wach C, Krause V, Moliadze V, Paulus W, Schnitzler A, Pollok B. Effects of 10 Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability. Behav Brain Res 2013;241:1-6.
    連結:
  45. 45. Alon G, Yungher DA, Shulman LM, Rogers MW. Safety and immediate effect of noninvasive transcranial pulsed current stimulation on gait and balance in Parkinson disease. Neurorehabil Neural Repair 2012;26:1089-1095.
    連結:
  46. 46. Hallgato E, Gyori-Dani D, Pekar J, Janacsek K, Nemeth D. The differential consolidation of perceptual and motor learning in skill acquisition. Cortex 2013;49:1073-1081.
    連結:
  47. 47. Kantak SS, Mummidisetty CK, Stinear JW. Primary motor and premotor cortex in implicit sequence learning--evidence for competition between implicit and explicit human motor memory systems. Eur J Neurosci 2012;36:2710-2715.
    連結:
  48. 48. Janacsek K, Nemeth D. Predicting the future: from implicit learning to consolidation. Int J Psychophysiol 2012;83:213-221.
    連結:
  49. 49. Song S. Consciousness and the consolidation of motor learning. Behav Brain Res 2009;196:180-186.
    連結:
  50. 50. Siengsukon CF, Boyd LA. Does sleep promote motor learning? Implications for physical rehabilitation. Phys Ther 2009;89:370-383.
    連結:
  51. 51. Meissner W. The role of acupuncture and transcutaneous-electrical nerve stimulation for postoperative pain control. Curr Opin Anaesthesiol 2009;22:623-626.
    連結:
  52. 52. Seco J, Kovacs FM, Urrutia G. The efficacy, safety, effectiveness, and cost-effectiveness of ultrasound and shock wave therapies for low back pain: a systematic review. Spine J 2011;11:966-977.
    連結: