Translated Titles

Development of Structure Optimal Design Software: Applications in Cable-Stayed Bridge Design





Key Words

雙層最佳化 ; 斜張橋 ; 設計模式 ; 有限元素分析 ; 最佳化設計 ; 結構最佳化 ; 軟體開發 ; Bi-level Optimization ; Cable-Stayed Bridge ; Design Patterns ; Finite Element Analysis ; Optimal Design ; Structural Optimization ; Software Development



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

斜張橋的材料使用效率高、建造相對簡便、在中長跨距相對經濟且十分美觀,也因此成為世界各地近五十年間最常採用之橋梁型態。但因其鋼索、主梁與橋塔間複雜的交互關係,造成其結構系統之高度靜不定,故斜張橋之設計實屬相當困難。採用傳統的設計方法於此種多變數與多束制條件之結構設計上,必然會耗費過多的時間與資源,且無法保證結果最佳之設計。因此,全世界橋梁工程師都非常渴望的便是一套能夠分析斜張橋最佳化設計問題之解決方案。 本研究為解決複雜的多目標最佳化問題,提出一套含多層最佳化流程之軟體系統架構,將各種結構分析軟體之結構資訊抽象化至統一的數學模型,以利採用不同最佳化演算法進行分析。基於該系統架構,本研究開發出一套功能強大的軟體以解決各種結構最佳化問題,稱為SODIUMM。該軟體已經過各種經典結構最佳化與斜張橋索力最佳化問題測試與驗證,確保其精度與效率,同時也展現其在分析模型的彈性以及最佳化參數設定的靈活度。 此外,為瞭解斜張橋設計參數在實務上的合理範圍以確保最佳解之可行性,本研究針對二十三座具代表性的斜張橋進行參數分析,統整出經驗設計參數範圍。再由參數之統計結果提出單塔與雙塔斜張橋之標準模型,藉以展示多種以雙層最佳化為基礎之斜張橋最佳化設計方法,並以此結果檢驗以往工程師所提出之經驗公式的正確性與適用範圍。最後,本研究基於各種斜張橋最佳化設計方法之結果,對現有之斜張橋提出建議,並針對各設計變數提出通用的最佳數值與概念性的設計方針。

English Abstract

Because of the aesthetic appeal, ease of erection, efficient utilization of materials, economical in long span bridges, and other countless advantages, cable-stayed bridges have found wide applications all over the world in recent 50 years. However, the design of cable-stayed bridge is very complex due to its three major structural components, stay-cables, girder, and pylon, are tightly coupled, which makes the structural system highly statically indeterminate. Design of such complex structure with a large number of design variables and constraints with traditional methods is inevitably time consuming and cannot guarantee the optimality of the final design. As a result, bridge engineers around the world are craving a methodology that is capable of solving the optimal configuration of cable-stayed bridges. In this research, a flexible software framework that integrates commercial structural analysis software and optimization algorithms with a multi-level optimization scheme is proposed for generalizing the structural information to a unified mathematical model that is applicable for any mathematical optimization algorithms and solving multi-objective optimization problems. Based on the proposed framework, a powerful software named “Structure Optimal Design Interface with Unified Mathematical Model” (SODIUMM), has been developed to solve various structure optimal design problems. Representative structural optimization problems and post-tensioning cable force optimization problems have been tested and validated to ensure the accuracy and efficiency of the SODIUMM. Those abundant optimization problems also reflect the flexibility of the software framework and the SODIUMM. Moreover, crucial design parameters are studied among 23 representative cable-stayed bridges in different classifications to provide practical design regions, which are used to examine the applicability of optimal solutions, and empirical design parameters. Standard cable-stayed bridge models for both single and double pylon configurations are proposed based on the empirical design parameters to demonstrate various optimal design schemes of cable-stayed bridges through bi-level optimization. Finally, from the optimal solutions of the standard cable-stayed bridge models, suggestions on specific bridges are made and general optimal values or conceptual guidelines are concluded in each respective design parameter.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
  1. Arora, J. S. 2011. Introduction to Optimal Design. London, Academic Press
  2. Bendsoe M. P., and Sigmund O. 2003. Topology Optimization: Theory, Methods and Applications. Berlin Heidelberg, Germany: Springer.
  3. Chen, D. W., Au, F. T. K., Tham, L. G., and Lee, P. K. K. 2000. Determination of Initial Cable Forces in Prestressed Concrete Cable-Stayed Bridges for Given Design Deck Profiles Using the Force Equilibrium Method. Computers and Structures 74: 1-9.
  4. Available at: http://www.csiamerica.com/sap2000/open-api.
  5. Conn, A. R., Gould, N. I. M., and Toint, P.L. 1991. A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. Society for Industrial and Applied Mathematics Journal on Numerical Analysis 28(2): 545-572.
  6. Cureos AB. 2013. C# port of COBYLA2 Nonlinear Constrained Optimization Method. Available at: https://github.com/cureos/cscobyla.
  7. Fowler, M. and Scott, K. 2000. UML Distilled: A Brief Guide to the Standard Object Modeling Language. Boston, MA, United States: Addison-Wesley.
  8. Flager, F., Adya, A., Haymaker, J., and Fischer, M. 2014. A Bi-level Hierarchical Method for Shape and Member Sizing Optimization of Steel Truss Structures. Computers and Structures 131: 1-11.
  9. George, H. W. 1999. Influence of Deck Material on Response of Cable-Stayed Bridges to Live Loads. Journal of Bridge Engineering 4(2): 136-142.
  10. Hassan, M. M., Nassef, A. O., and El Damatty, A. A. 2012. Determination of Optimal Post-tensioning Cable Forces of Cable-Stayed Bridges. Engineering Structures 44: 248-259.
  11. Hassan, M. M. 2013. Optimization of Stay Cables in Cable-Stayed Bridges using Finite Element, Genetic Algorithm, and B-spline Combined Technique. Engineering Structures 49: 643-654.
  12. Hassan, M. M., Nassef, A. O., and El Damatty, A. A. 2013. Optimal Design of Semi-fan Cable-Stayed Bridges. Canadian Journal of Civil Engineering 40: 285-297.
  13. Himmelblau, D., 1972. Applied Nonlinear Programming. New York: McGraw-Hill
  14. Available at: http://ab-initio.mit.edu/nlopt.
  15. Lee, T. Y., Kim, Y. H., and Kang, S. W. 2008. Optimization of Tensioning Strategy for Asymmetric Cable-Stayed Bridge and its Effect on Construction Process. Structural and Multidisciplinary Optimization 35(6): 623-629.
  16. Lemonge, A. C., Silva, M. M., Barbosa, H. J., Borges, C. C., Lima, E. B., & Santos, P. P. 2010. A genetic algorithm for optimization of geometrically nonlinear truss structures. 9o SIMMEC-Simposio de Mecanica Computacion al.
  17. Leu, L. J., Mukherjee, S., Wei, X., and Chandra, A. 1994. Shape Optimization in Elasticity and Elasto-viscoplasticity by the Boundary Element Method. International Journal of Solids and Structures 31(4): 533-550.
  18. Available at: http://www.lundin.info/mathparser.
  19. Janjic, D., Pircher, M., and Pricher, H. 2003. Optimization of Cable Tensioning in Cable-Stayed Bridges. Journal of Bridge Engineering 8(3): 131-137.
  20. Microsoft Inc. 2014. Microsoft Developer Network (MSDN).
  21. Available at: http://msdn.microsoft.com/.
  22. Nazmy, A. S. and Abdel-Ghaffar, A. M. 1990. Three-dimensional Nonlinear Static Analysis of Cable-Stayed Bridges. Computers & Structures 34(2): 257-271.
  23. Schmit, L. A., Jr., and Miura, H. 1974. Approximation concepts for efficient structural synthesis. American Institute of Aeronautics and Astronautics Journal 12(5): 692-699.
  24. Powell, M. J. D. 1994. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation. Advances in Optimization and Numerical Analysis 275: 51-67.
  25. Powell, M. J. D. 2007. A view of algorithms for optimization without derivatives. Cambridge University Technical Report: DAMTP 2007/NA03.
  26. Rosenbrock, H.H. 1960. An automatic method for finding the greatest or least value of a function. The Computer Journal 3: 175-184.
  27. Schneider, P., Schneider A., and Schwarz P. 2002. A modular approach for simulation-based optimization of MEMS. Microelectronics Journal 33(1-2): 29-38.
  28. Simoes, L. M. C., and Negrao, J. H. O. 1994. Sizing and Geometry Optimization of Cable-Stayed Bridges. Computers & Structures 52(2): 309-321.
  29. Spellucci, P. 1998. An SQP method for general nonlinear programs using only equality constrained subproblems. Mathematical Programming 82: 413-448.
  30. Spellucci, P. 1998. A new technique for inconsistent problems in the SQP method. Mathematical Methods of Operations Research 47: 355-500.
  31. Sung, Y. C., Cheng, D. W., and Teo, E. H. 2006. Optimal post-tensioning cable forces of Mau-Lo Hsi cable-stayed bridge. Engineering Structures 28(10): 1407-1417.
  32. Svensson, H. 2012. Cable-Stayed Bridges: 40 Years of Experience Worldwide. Berlin, Germany: Wilhelm Ernst & Sohn.
  33. Available at: http://www.mathworks.com/help/optim/ug/fmincon.html.
  34. Vanderplaats, G. N. and Salajegheh, E. 1989. New Approximation Method for Stress Constraints in Structural Synthesis. American Institute of Aeronautics and Astronautics Journal 27(3): 352-362.
  35. Wang, D., Zhang, W. H., and Jiang, J. S. 2002. Truss Shape Optimization with Multiple Displacement Constraints. Computer Methods in Applied Mechanics and Engineering 191: 3597-3612.
  36. Wang, P. H., Tseng, T. C., and Yang, C. G. 1993. Initial Shape of Cable-Stayed Bridges. Computers and Structures 47(1): 111-123.
  37. Wang, P. H and Yang, C. G. 1996. Parametric Studies on Cable-Stayed Bridges Computers and Structures 60(2): 243-260.
  38. Xie, Y. M. and Steven, G.P. 1997. Evolutionary Structural Optimization. Berlin Heidelberg, Germany: Springer.
  39. Yang, X. Y., Xie, Y. M., Steven, G. P., and Querin, O. M. 1999. Bidirectional Evolutionary Method for Stiffness Optimization. 37(11): 1483-1488.
  40. Zhang, W.H., Domaszewski, M., and Bassir, H. 1999. Developments of Sizing Sensitivity Analysis with the ABAQUS Code. Structural Optimization 17: 219-225.
  41. Buck, E. M. and Yacktman, D. A. 2010. Cocoa Design Patterns. Boston, MA, United States: Addison-Wesley.
  42. Computers and Structures, Inc. 2014. SAP2000 Open Application Programming Interface (OAPI).
  43. Accessed 2 May 2014.
  44. Accessed 6 May 2014.
  45. Gamma, E., Johnson, R., Vlissides, J., and Helm, R. 1994. Design Patterns: Elements of Reusable Object-Oriented Software. Boston, MA, United States: Addison-Wesley.
  46. Gimsing, N.J. 1983. Cable Supported Bridges: Concept and Design Second Edition. New York: John Wiley & Sons. Hassan, M. M., Nassef, A. O., and El Damatty, A. A. 2013. Advances in Structural Engineering 16(3): 559-578.
  47. Haupt, R. L., and Haupt, S. E. 2004. Practical Genetic Algorithms. New York: John Wiley & Sons.
  48. Johnson, S.G. 2014. The NLopt Nonlinear-Optimization Package.
  49. Accessed 6 May 2014.
  50. Ke, C. Y., Shih, K. W., and Leu, L. J. 2013. Applications of Element Exchange Method in Structural Topology Optimization. Proceedings of the 26th KKHTCNN Symposium on Civil Engineering 2013, Singapore.
  51. Lai, Y. Y. and Wang, P. S. 2006 Nonlinear Analysis of Ta-Chi Cable-Stayed Bridge. Master Thesis, Department of Civil Engineering, Chung Yuan Christian University, Taoyuan, Taiwan (R.O.C.).
  52. Leu, L. J. 2012. Chapter 6: Programming for Frame12. Advanced Structural Theory. Lecture conducted from National Taiwan University, Taipei, Taiwan.
  53. Lin, Y. Y. and Cheng, C. M. 2006. Aero Dynamic Behavior Analysis of DaZhi Cable-Stayed Bridge (Chinese). Structural Engineering 21(2): 103-127.
  54. Lu, C. H. 2010. Investigation of Bi-directional Evolutionary Structural Optimization and Multiple Material Topology Optimization. Master Thesis, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan (R.O.C).
  55. Lee, C. H. 2005. Development of a System Framework for Optimal Design Using Finite Element Package as the Analysis Engine. Master Thesis, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan (R.O.C.).
  56. Lundin, P. 2012. .NET Math Parser: info.lundin.Math
  57. Accessed 12 May 2014.
  58. McGuire, W., Gallagher, R. H., and Ziemian, R. D. 2000. Matrix Structural Analysis. New York: John Wiley & Sons.
  59. Accessed 11 May 2014
  60. Pan, T. C., Ling, S. F., and Tseng, C. H. 1994. Integrating and automating finite element analysis and optimization on PCs. International Journal of Computer Applications in Technology 7(3-6): 278-283.
  61. Podolny, W., and Scalzy, J. B. 1986. Construction and Design of Cable-Stayed Bridges. New York: John Wiley & Sons
  62. Rogue Wave Software, Inc. 2014. IMSLR Numerical Libraries.
  63. Available at: http://www.roguewave.com/products/imsl-numerical-libraries.aspx. Accessed 6 May 2014.
  64. Rouhi, M., Rais-Rohani, M., and Williams, T. N. 2010. Element Exchange Method for Topology Optimization. Structural and Multidisciplinary Optimization 42(2): 215-231.
  65. SAP2000. 2014. CSI Analysis Reference Manual for SAP2000, ETABS, SAFE and CSiBridge. Berkley, CA, United States: Computers and Structures, Inc.
  66. Shih, K. W. 2013. Improvements and Applications of Element Exchange Method in Structural Topology Optimization. Master Thesis, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan (R.O.C.).
  67. The MathWorks, Inc. 2014. Documentation Center – fmincon.
  68. Accessed 6 May 2014.
  69. Tsai, C. Y. 1999. Cable-Stayed Bridges (Chinese). Scientific & Technical Publishing Co., Ltd. Taipei, Taiwan (R.O.C.).
  70. Walther, R., Houriet, B., Inler, W., and Moia, P. 1988. Cable-Stayed Bridges. London: Telford.
Times Cited
  1. 邱義汎(2016)。結合梁、柱元素之開孔結構最佳化設計。臺灣大學土木工程學研究所學位論文。2016。1-80。 
  2. 趙九州(2017)。結合粒子群算法與人工蜂群算法於最佳化設計軟體之斜張橋設計。臺灣大學土木工程學研究所學位論文。2017。1-98。 
  3. 林子欽(2016)。考慮施工步驟之斜張橋最佳化設計。臺灣大學土木工程學研究所學位論文。2016。1-103。 
  4. 曾彥淩(2015)。孔洞於結構中之最佳化設計。臺灣大學土木工程學研究所學位論文。2015。1-78。