Title

應用位移量測技術識別預力梁預力之可行性研究

Translated Titles

Feasibility Study of Applying the Deflection Measurement Technology to Identify the Prestress Force in Pre-stressed Concrete Beams

DOI

10.6342/NTU201603577

Authors

樊鵬

Key Words

空間構架 ; 預力檢測 ; 預力梁 ; 位移量測 ; 預力損失 ; space frames ; prestress force identification ; pre-stressed beams ; deflection measurement ; prstress losses

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

張國鎮

Content Language

繁體中文

Chinese Abstract

為對橋梁全生命週期進行有效管理,應有效掌握各個橋梁構件損壞及劣化之 趨勢及原因。預力橋在城市道路、鐵路及高速公路均有廣泛應用,且在進行此類 橋梁設計過程中,通常根據現有規範及理論公式來計算所施加之預應力值,而在 設計使用年限內,預力梁建設完成後,鋼絞線鬆弛、混凝土潛變、鋼絞線及錨頭 之摩擦、錨頭移位及溫度變化均可能造成預力損失。因此,為了有效控制預力梁 使用狀態,預力梁之預力檢測則成為必然。 本研究首先以空間構架試驗進行理論驗證,以試驗數據結果判斷文中所用非 破壞軸力檢測方法之可行性。隨後以加載橫向載重及量測橫向位移之方式來對預 力梁進行軸向應力識別,並將其應用於預力構件識別預力變化之檢測技術研發, 於研究初期分別以預力箱型鋼梁及預力混凝土梁試體進行試驗。試驗採用後拉法 施加預力之方式加載預力,量測預力梁承受橫向載重下特定點位之位移,同時考 量構件之挫屈載重公式來推估梁所承受之軸力值,即預力值。並將預估預力值與 安裝於預力梁端部之荷重計量測值進行比較,由初步試驗結果來驗證檢測方法之 可行性,進而規劃進一步深入研究及擴大試驗試體規模。

English Abstract

To administrate the full lifecycle of bridge beams, it is necessary to grasp the reasons of damages in bridge members. Pre-stressed beams are broadly applied in the urban, railway and highway bridges, during the design process, prestress forces are decided through existing norms or theoretical formula. Within their serviceability life, after the construction, many factors such as relaxation of tendons, shrinkage and creep of concrete, friction between tendons and tendon ducts, anchorage slip and ambient temperature can lead to the change of the applied pre-stress forces. So, in order to control the status of pre-stressed bridges, the identification of prestress force is inevitable. This study conducted the theoretical testify in space frames to make a clear judge of the feasibility of these non-destructive methods mentioned in this paper. Subsequently, by using displacements measured after applying a vertical load in the mid-span of the beam, the identification of prestress force can be made on pre-stressed steel box beam and pre-stressed concrete beam, respectively. Post-tensioning method is considered during the experimental tests. Axial force, which is prestress force, can be estimated by using displacements measured in certain sections and the formula of axial buckling load. Comparing estimated axial force with existing axial force, which is measured by a load cell at one end of the beam, it is possible to verify the feasibility of axial force identification proposed in this study and then, enlarge the size of specimen and plan for further study in the near future.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. [1] Beconcini M. L. Un metodo pratico per la determinazione del tiro nelle catene. Costruire in laterizio, 54/96 299-301, 1996.
    連結:
  2. [2] Briccoli Bati S., Tonietti U. Experimental methods for estimating in situ tensile force in tie-rods. Journal of Engineering Mechanics, 1275-1283, 2001.
    連結:
  3. [3] Briccoli Bati S., Puccetti P., Tonietti U. Experimental methods for testing the pull tension in chains. Hallay C., Kulcsar P. (Eds.), Proceedings of the 13th World Conference on Non-Destructive Testing, Amsterdam, Elsevier, 1259-1263, 1992.
    連結:
  4. [5] Tullini N., Rebecchi G., Laudiero F. Bending tests to estimate the axial force in tie-rods. Mechanics Research Communications, 44 57-64, 2012.
    連結:
  5. [6] Blasi C., Sorace S. Determining the axial force in metallic rods. Structural Engineering International, 4 (4) 241-246, 1994.
    連結:
  6. [7] Sorace S. Parameter models for estimating in-situ tensile force in tie-rods. Journal of Engineering Mechanics, 122 (9) 818-825, 1996.
    連結:
  7. [8] Lagomarsino S., Calderini C. The dynamical identification of the tensile force in ancient tie-rods. Engineering structures, 27 (6) 846-856, 2005.
    連結:
  8. [9] Livingston T., Béliveau J. G., Huston D. R. Estimation of axial load in prismatic members using flexural vibrations. Journal of Sound and Vibration, 179 (5) 899-908, 1995.
    連結:
  9. [10] Tullini N., Laudiero F. Dynamic identification of beam using one flexural mode shape. Journal of sound and vibration, 318 131-147, 2008.
    連結:
  10. [11] Lu Z. R., Law S. S. Identification of pre-stress force from measured structural responses. Mechanical Systems and Signal Processing, 20 (8) 2186-2199, 2006.
    連結:
  11. [12] Law S. S., Lu Z. R. Time domain responses of a pre-stressed beam and pre-stress identification. Journal of Sound and Vibration, 288 (4-5) 1011-1025, 2005.
    連結:
  12. [13] Li H., Lv Z., Liu J. Assessment of pre-stress force in bridges using structural dynamic responses under moving vehicles. Mathematical Problems in Engineering, art. ID 435939, 2013.
    連結:
  13. [14] Bu J. Q., Wang H. Y. Effective pre-stress identification for a simply supported PRC beam bridge by BP neural network method. Journal of Vibration and Shock, 30 (12) 155-159, 2011.
    連結:
  14. [15] Abraham M. A., Park S., Stubbs N. Loss of pre-stress prediction based on non- destructive damage location algorithms. Smart Structures and Materials, vol. 2446 of Proceedings of SPIE, 60-67, 1995.
    連結:
  15. [17] Xuan F. Z., Tang H., Tu S. T. In situ monitoring on pre-stress losses in the reinforced structure with fiber optic sensors. Measurement: Journal of the International Measurement Confederation, 42 (1) 107-111, 2009.
    連結:
  16. [18] Xu J., Sun Z. Pre-stress force identification for eccentrically pre-stressed concrete beam from beam vibration response. Tech Science Press, SL, 5 (2) 107-115, 2011.
    連結:
  17. [19] Timoshenko S. P., Gere J. M. Theory of Elastic Stability. McGraw-Hill, New York, 1961.
    連結:
  18. [20] Bazant Z. P., Cedolin L. Stability of Structures. Elastic, Inelastic, Fracture, and Damage Theory. Oxford University Press, Oxford, 1991.
    連結:
  19. [22] Tullini N. Bending tests to estimate the axial force in slender beams with unknown boundary conditions. Mechanics Research Communications, 53 15-23, 2013.
    連結:
  20. [23] Maes K., Peeters J., Reynders E., Lombaert G., De Roeck G. Identification of axial forces in beam members by local vibration measurements. Journal of Sound and Vibration, 332 (21) 5417-5432, 2013.
    連結:
  21. [24] Singer J., Arbocz J., Weller T. Buckling experiments: experimental methods in buckling of thin-walled structures: basic concepts, columns, beams and plates. Vol. 1, John Wiley & Sons, New York, 2000.
    連結:
  22. [25] Southwell R. V. On the analysis of experimental observations in problems of elastic stability. Proc. Royal Society, London, series A, 135, 601 616, 1932.
    連結:
  23. [27] Lee Z. K., Chen C. C., Hung H. H., Sung Y. C., Lee L. S. Loading tests and long-term monitoring on Wugu-Yangmei viaduct of Taiwan National Highway. The 5th Asia Conference on Earthquake Engineering, Taipei, Taiwan, October 16-18, 2014.
    連結:
  24. [4] Rebecchi G. Beam axial load identification using one vibration mode shape. PhD Thesis, University of Ferrara, http://eprints.unife.it/tesi/389, 2011.
  25. [16] Kim J. T., Ryu Y. S., Yun C. B. Vibration based method to detect pre-stress loss in beam type bridges. Smart Systems and Non-destructive Evaluation for Civil Infrastructures, vol. 5057 of Proceedings of SPIE, 559-568, 2003.
  26. [21] Bonopera M. Axial Load Identifications in Space Frame Systems, PhD Thesis, University of Ferrara, 2016.
  27. [26] Lee Z. K. Dazhi bridge safety monitoring demonstration project. 5th International Conference on Advances in Experimental Structural Engineering, Taipei, Taiwan, November 8-9, 2013.
  28. [28] Eurocode 2. Design of concrete structures - Part 1-1: General rules and rules for buildings. UNI EN 1992-1-1:2005.