Title

反應器與電子電漿共振於光觸媒之分析與應用

Translated Titles

Characterization and Application of Reactor and Surface Plasmon Resonance on Photocatalysis

DOI

10.6342/NTU.2012.00373

Authors

張志毅

Key Words

光觸媒 ; 旋轉盤反應器 ; 表面電子電漿共振 ; 銀/二氧化鈦 ; 金/二氧化鈦 ; 廢水處理 ; Photocatalysis ; Rotating disk reactor ; Surface plasmon resonance ; Ag/TiO2 ; Au/TiO2 ; Wastewater treatment

PublicationName

臺灣大學化學工程學研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

博士

Advisor

吳乃立

Content Language

英文

Chinese Abstract

直接利用太陽能進行光觸媒廢水處理為相當具有潛力之綠色製程。光觸媒反應之優勢除可直接採用再生能源外,其觸媒反應之特性,可減低製程中環境之二次污染。然而,現今偏低的反應轉化效能為實現光觸媒被實際應用所需要克服的關鍵之一。本論文以提高光觸媒反應程序效能為目標,由反應器設計與可見光利用之觀點著手進行研究。 第一,吾人設計一旋轉盤反應器(Rotating disk reactor),並測試與評價其應用於光觸媒廢水染料污染物之降解能力。在此光觸媒廢水處理製程中,二氧化鈦光觸媒奈米粉體均勻塗佈於旋轉盤表面,而染料(甲基橙)水溶液於轉盤旋轉與紫外光照射下,由轉盤中心注入並由轉盤徑向流出。結合流體力學與動力學模型,反應器之基本特性參數(滯留時間與液膜膜厚)與操作變數(試液體積流量與旋轉盤轉速)之間的關係可被緊密建立。實驗結果顯示,反應器旋轉盤上之液膜膜厚受試液體積流量與旋轉盤轉速交互控制。而於一關鍵膜厚厚度之下,膜厚的減低可使觸媒反應於光反應限制區進行操作,而不受質傳反應限制。即使於光反應限制區,總體反應速率仍顯著受制於液膜膜厚。這是由於入射光會於到達二氧化鈦觸媒表面進行反應之前,被染料溶液吸收而衰減。於最佳之實驗條件下,甲基橙染料整體轉化率可超過50%,而僅需數秒之反應器滯留時間。旋轉盤反應器之設計模型方程式已被推導,並顯現相當具有前景之製程規模放大潛力。 第二,銀奈米粒子於可見光照射下具有之表面電子電漿共振現象(Surface plasmon resonance),其應用於二氧化鈦光觸媒之潛力已被探討。研究重點強調於分別量化評估蕭基障壁(Schottky-barrier)與表面電子電漿共振所貢獻之光觸媒活性增益,並進一步深入了解特定光子激發能量與銀奈米結構對於表面電子電漿共振現象引發之光觸媒活性增益的交互關係。本研究製備兩種形貌之複合光觸媒,包含銀奈米粒子/二氧化鈦奈米粒子(Ag-NP/TiO2-NP)與銀奈米環/二氧化鈦奈米管(Ag-NR/TiO2-NT)。除探討不同的銀奈米結構所產生之表面電子電漿共振模式外,並觀察兩種複合光觸媒對於甲基橙染料降解之能力。紫外光源與四種不同之可見單色光源分別使用於激發二氧化鈦之電子電洞對以及銀奈米粒子之表面電子電漿共振。藉由可見/紫外光的不同組合照射實驗,蕭基障壁與表面電子電漿共振所貢獻之光觸媒活性增益可被清楚區分。實驗結果顯示,兩種不同形貌之觸媒皆顯現表面電子電漿共振產生之光觸媒活性增益,而二氧化鈦與銀奈米粒子之形貌與光觸媒活性有複雜之關係,暗示激發之二氧化鈦電子電洞對與銀奈米粒子內之表面電子電漿共振有強烈之交互作用。本研究最特殊之貢獻在於首次證實,可見光源之光子能量與複合光觸媒之表面電子電漿共振活性增益有其特定選擇性:表面電子電漿共振貢獻之活性增益程度,隨著可見光光子入射頻率遠離表面電子電漿共振頻率而降低,而與共振頻率之絕對值無關。Ag-NR/TiO2-NT光觸媒與Ag-NP/TiO2-NP光觸媒相比,表現出較佳之表面電子電漿共振增益活性。 最後,吾人進一步致力於觸媒材料與反應器的設計,以期提升表面電子電漿共振對於二氧化鈦光觸媒降解反應的活性增益。對於前者,吾人研發一創新之”奈米球模板製程”,製作大範圍面積之單層奈米金顆粒,並使用旋轉塗佈法旋鍍二氧化鈦光觸媒,成功合成出金奈米粒子嵌入式二氧化鈦薄膜光觸媒材料。奈米金顆粒於二氧化鈦薄膜內之嵌入量與大小可藉由金靶材之濺鍍時間精準控制。對於後者,一搭載雙光源之”微反應器”,被設計於量測此特殊結構的金二氧化鈦觸媒材料對於染料降解反應之活性增益現象。活性實驗結果發現,嵌入金奈米粒子之二氧化鈦薄膜光觸媒於不同組合之光源照射下,清楚顯現蕭基障壁與表面電子電漿共振產生之光觸媒活性增益。

English Abstract

Wastewater treatment based on solar energy-effected photocatalytic reaction is a green process that utilizes renewable energy resources and minimizes secondary pollution. Low conversion efficiency is one of the key issues to overcome for realizing its practical application. This study aims at significantly raising the process efficiency from the viewpoints of photocatalytic reactor and visible light utilization, respectively. First, a rotating disk reactor (RDR) has been evaluated for the application of photocatalytic decomposition of dye pollutants in water. In this process, photocatalyst (TiO2) particles are immobilized onto a disk, and dye (methyl orange)-containing solution is allowed to flow in radial direction along the surface of the disk, which is rotating and illuminated with UV light. The correlations between the fundamental characteristics of the reactor, including residence time and film thickness, and its operating variables, including volumetric flow rate and disk rotating speed, have been established by the combination of fluid dynamic and kinetic models. The results indicate that the reactor can be operating beyond mass-transfer limitation by reducing the liquid film thickness, which is a complex function of both flow rate and disk rotating speed, below certain critical value. Even under such a condition, the overall reaction rate remains strongly affected by the liquid film thickness due to the intensity attenuation of incidence light through the liquid film before reaching the TiO2 surface. With selected operation conditions, conversions greater than 50% have been achieved within only a few seconds of residence time. A reactor design equation has been derived, indicating promising scale-up potential of the process. Second, a fascinating surface plasmon resonance (SPR) phenomenon of Ag nanostructures within visible light wavelength region has been investigated for the potential application to TiO2 photocatalysis, and emphasis has been placed on quantifying the Schottky-barrier effect (SB-effect) and the SPR effect and on looking for energy-specificity and morphology-dependence of the SPR effect. Two types of Ag/TiO¬2 composite photocatalysts, including Ag nanoparticle-on-TiO2 nanoparticle (Ag-NP/TiO2-NP) and Ag nanoring-on-TiO2 nanotube (Ag-NR/TiO2-NT), that generate different SPR modes, have been evaluated for photocatalytic bleaching of methyl orange (MO). Irradiation from ultraviolet light (UVL) and visible-light (VL) emitting diodes (LEDs) of four different wavelengths are applied to excite excitons in TiO2 and surface plasmon of Ag, respectively. Under various combinations of the UVL and VL LED, the SB- and SPR-effects due to the Ag nanostructures have been clearly distinguished. The photocatalytic activity exhibits complex dependence on the morphology of TiO2 and Ag, suggesting strong interaction between the excited electron-hole pairs and SPR effect. In particular, SPR-enabled enhancement in photocatalytic activity has been confirmed for both catalysts, and the frequency-specificity of such enhancement has for the first time been demonstrated: the extent of the enhancement decreases with increasing departure of the VL photon energy from the resonance peak energy, irrespective of the absolute value of the resonance energy. Ag-NR/TiO2-NT nanostructure in general exhibits greater SPR-enhanced enhancement than Ag-NP/TiO2-NP one. Finally, we further delicate effort to material and reactor design for the purpose of enhancing SPR effects of noble metal on TiO2 photocatalysis. We successfully synthesize a large-scale Au NPs-embedded TiO2 thin film photocatalyst with applying a series of fabricating process involving a novel “nanospheres template method” followed by spin-coating of TiO2 thin film. The Au NPs concentration and diameter in the TiO2 matrix can be easily controlled by the sputtering time of Au target. A customized “micro-reactor” with dual-light sources is designed to evaluate the photocatalytic activities and the activity data showed clearly the SB- and SPR-enabled activity enhancement in TiO2 photocatalysis in the presence of embedded Au NPs.

Topic Category 工學院 > 化學工程學研究所
工程學 > 化學工業
Reference
  1. [2] Y. Nosaka, M. A. Fox, "Kinetics for electron-transfer from laser-pulse-irradiated colloidal semiconductors to adsorbed methylviologen - Dependence of the quantum yield on incident pulse width," Journal of Physical Chemistry, 92, 1893-1897 (1988).
    連結:
  2. [3] A. L. Linsebigler, G. Q. Lu, J. T. Yates, "Photocatalysis on TiO2 surfaces - Principles, mechanisms, and selected results," Chemical Reviews, 95, 735-758 (1995).
    連結:
  3. [4] A. Hagfeldt, M. Gratzel, "Light-induced redox reactions in nanocrystalline systems," Chemical Reviews, 95, 49-68 (1995).
    連結:
  4. [5] A. Fujishima, K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," Nature, 238, 37-38 (1972).
    連結:
  5. [6] M. A. Fox, M. T. Dulay, "Heterogeneous photocatalysis," Chemical Reviews, 93, 341-357 (1993).
    連結:
  6. [7] M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, "Environmental applications of semiconductor photocatalysis," Chemical Reviews, 95, 69-96 (1995).
    連結:
  7. [8] A. Fujishima, X. T. Zhang, D. A. Tryk, "TiO2 photocatalysis and related surface phenomena," Surface Science Reports, 63, 515-582 (2008).
    連結:
  8. [9] L. M. Liu, P. Crawford, P. Hu, "The interaction between adsorbed OH and O2 on TiO2 surfaces," Progress in Surface Science, 84, 155-176 (2009).
    連結:
  9. [10] M. A. Henderson, "A surface science perspective on TiO2 photocatalysis," Surface Science Reports, 66, 185-297 (2011).
    連結:
  10. [11] X. Chen, S. S. Mao, "Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications," Chemical Reviews, 107, 2891-2959 (2007).
    連結:
  11. [12] P. V. Kamat, "Meeting the clean energy demand: Nanostructure architectures for solar energy conversion," Journal of Physical Chemistry C, 111, 2834-2860 (2007).
    連結:
  12. [13] A. Kudo, Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chemical Society Reviews, 38, 253-278 (2009).
    連結:
  13. [14] C. Hu, Y. Q. Lan, J. H. Qu, X. X. Hu, A. M. Wang, "Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria," Journal of Physical Chemistry B, 110, 4066-4072 (2006).
    連結:
  14. [15] M. R. Elahifard, S. Rahimnejad, S. Haghighi, M. R. Gholami, "Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria," Journal of the American Chemical Society, 129, 9552-9553 (2007).
    連結:
  15. [17] A. Wold, "Photocatalytic Properties of TiO2," Chemistry of Materials, 5, 280-283 (1993).
    連結:
  16. [18] J. M. Herrmann, "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants," Catalysis Today, 53, 115-129 (1999).
    連結:
  17. [19] O. M. Alfano, D. Bahnemann, A. E. Cassano, R. Dillert, R. Goslich, "Photocatalysis in water environments using artificial and solar light," Catalysis Today, 58, 199-230 (2000).
    連結:
  18. [20] D. S. Bhatkhande, V. G. Pangarkar, Aacm Beenackers, "Photocatalytic degradation for environmental applications - a review," Journal of Chemical Technology and Biotechnology, 77, 102-116 (2002).
    連結:
  19. [21] K. Pirkanniemi, M. Sillanpaa, "Heterogeneous water phase catalysis as an environmental application: a review," Chemosphere, 48, 1047-1060 (2002).
    連結:
  20. [22] O. Carp, C. L. Huisman, A. Reller, "Photoinduced reactivity of titanium dioxide," Progress in Solid State Chemistry, 32, 33-177 (2004).
    連結:
  21. [23] A. G. Agrios, P. Pichat, "State of the art and perspectives on materials and applications of photocatalysis over TiO2," Journal of Applied Electrochemistry, 35, 655-663 (2005).
    連結:
  22. [24] J. Blanco-Galvez, P. Fernandez-Ibanez, S. Malato-Rodriguez, "Solar photocatalytic detoxification and disinfection of water: Recent overview," Journal of Solar Energy Engineering-Transactions of the Asme, 129, 4-15 (2007).
    連結:
  23. [25] S. B. Wang, H. M. Ang, M. O. Tade, "Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art," Environment International, 33, 694-705 (2007).
    連結:
  24. [26] U. I. Gaya, A. H. Abdullah, "Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems," Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 9, 1-12 (2008).
    連結:
  25. [27] M. N. Chong, B. Jin, C. W. K. Chow, C. Saint, "Recent developments in photocatalytic water treatment technology: A review," Water Research, 44, 2997-3027 (2010).
    連結:
  26. [29] U. Diebold, "The surface science of titanium dioxide," Surface Science Reports, 48, 53-229 (2003).
    連結:
  27. [30] K. Tanaka, M. F. V. Capule, T. Hisanaga, "Effect of crystallinity of TiO2 on its photocatalytic action," Chemical Physics Letters, 187, 73-76 (1991).
    連結:
  28. [31] R. I. Bickley, T. Gonzalezcarreno, J. S. Lees, L. Palmisano, R. J. D. Tilley, "A structural investigation of titanium-dioxide photocatalysis," Journal of Solid State Chemistry, 92, 178-190 (1991).
    連結:
  29. [32] X. Y. Deng, Y. H. Yue, Z. Gao, "Gas-phase photo-oxidation of organic compounds over nanosized TiO2 photocatalysts by various preparations," Applied Catalysis B-Environmental, 39, 135-147 (2002).
    連結:
  30. [33] A. Mills, S. K. Lee, A. Lepre, "Photodecomposition of ozone sensitised by a film of titanium dioxide on glass," Journal of Photochemistry and Photobiology a-Chemistry, 155, 199-205 (2003).
    連結:
  31. [34] S. S. Watson, D. Beydoun, J. A. Scott, R. Amal, "The effect of preparation method on the photoactivity of crystalline titanium dioxide particles," Chemical Engineering Journal, 95, 213-220 (2003).
    連結:
  32. [35] T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, "Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases," Journal of Catalysis, 203, 82-86 (2001).
    連結:
  33. [36] D. S. Muggli, L. F. Ding, "Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics," Applied Catalysis B-Environmental, 32, 181-194 (2001).
    連結:
  34. [37] E. M. Levin, H. F. McMurdie, Phase Diagram for Ceramists, The American Ceramic Society, Inc. 76 (1975).
    連結:
  35. [39] N. Serpone, E Pelizzetti, Photocatalysis: Fundamnetals and Applications, John Wiley & Sons, New York (1989).
    連結:
  36. [40] H. S. Fogler, Elements of chemical reaction engineering, Prentice-Hall, Englewood Cliffs 776 (2006).
    連結:
  37. [41] M. Andersson, L. Osterlund, S. Ljungstrom, A. Palmqvist, "Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol," Journal of Physical Chemistry B, 106, 10674-10679 (2002).
    連結:
  38. [43] Y. J. Chen, D. D. Dionysiou, "TiO2 photocatalytic films on stainless steel: The role of Degussa P-25 in modified sol-gel methods," Applied Catalysis B-Environmental, 62, 255-264 (2006).
    連結:
  39. [44] H. D. Nam, B. H. Lee, S. J. Kim, C. H. Jung, J. H. Lee, S. Park, "Preparation of ultrafine crystalline TiO2 powders from aqueous TiCl4 solution by precipitation," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 37, 4603-4608 (1998).
    連結:
  40. [45] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras, "Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity," Langmuir, 20, 2900-2907 (2004).
    連結:
  41. [46] D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, E. C. Dickey, "Titanium oxide nanotube arrays prepared by anodic oxidation," Journal of Materials Research, 16, 3331-3334 (2001).
    連結:
  42. [47] Y. Lei, L. D. Zhang, J. C. Fan, "Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3," Chemical Physics Letters, 338, 231-236 (2001).
    連結:
  43. [48] J. J. Wu, C. C. Yu, "Aligned TiO2 nanorods and nanowalls," Journal of Physical Chemistry B, 108, 3377-3379 (2004).
    連結:
  44. [49] J. M. Wu, H. C. Shih, W. T. Wu, "Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation," Chemical Physics Letters, 413, 490-494 (2005).
    連結:
  45. [50] D. Mardare, C. Baban, R. Gavrila, M. Modreanu, G. I. Rusu, "On the structure, morphology and electrical conductivities of titanium oxide thin films," Surface Science, 507, 468-472 (2002).
    連結:
  46. [51] Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa, "Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst," Nature, 414, 625-627 (2001).
    連結:
  47. [52] H. Yamashita, Y. Ichihashi, M. Takeuchi, S. Kishiguchi, M. Anpo, "Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation," Journal of Synchrotron Radiation, 6, 451-452 (1999).
    連結:
  48. [53] S. Ikeda, N. Sugiyama, B. Pal, G. Marci, L. Palmisano, H. Noguchi, K. Uosaki, B. Ohtani, "Photocatalytic activity of transition-metal-loaded titanium(IV) oxide powders suspended in aqueous solutions: Correlation with electron-hole recombination kinetics," Physical Chemistry Chemical Physics, 3, 267-273 (2001).
    連結:
  49. [54] N. L. Wu, M. S. Lee, "Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution," International Journal of Hydrogen Energy, 29, 1601-1605 (2004).
    連結:
  50. [55] J. F. Zhu, Z. G. Deng, F. Chen, J. L. Zhang, H. J. Chen, M. Anpo, J. Z. Huang, L. Z. Zhang, "Hydrothermal doping method for preparation of Cr3+-TiO2 photocatalysts with concentration gradient distribution of Cr3+," Applied Catalysis B-Environmental, 62, 329-335 (2006).
    連結:
  51. [56] J. F. Zhu, F. Chen, J. L. Zhang, H. J. Chen, M. Anpo, "Fe3+-TiO2 photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization," Journal of Photochemistry and Photobiology a-Chemistry, 180, 196-204 (2006).
    連結:
  52. [57] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, "Visible-light photocatalysis in nitrogen-doped titanium oxides," Science, 293, 269-271 (2001).
    連結:
  53. [58] J. C. Yu, J. G. Yu, W. K. Ho, Z. T. Jiang, L. Z. Zhang, "Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders," Chemistry of Materials, 14, 3808-3816 (2002).
    連結:
  54. [59] S. Sakthivel, H. Kisch, "Daylight photocatalysis by carbon-modified titanium dioxide," Angewandte Chemie-International Edition, 42, 4908-4911 (2003).
    連結:
  55. [60] T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, "Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light," Applied Catalysis a-General, 265, 115-121 (2004).
    連結:
  56. [61] X. Z. Li, F. B. Li, C. L. Yang, W. K. Ge, "Photocatalytic activity of WOx-TiO2 under visible light irradiation," Journal of Photochemistry and Photobiology a-Chemistry, 141, 209-217 (2001).
    連結:
  57. [62] F. X. Ye, A. Ohmori, "The photocatalytic activity and photo-absorption of plasma sprayed TiO2-Fe3O4 binary oxide coatings," Surface & Coatings Technology, 160, 62-67 (2002).
    連結:
  58. [63] Y. Bessekhouad, D. Robert, J. V. Weber, "Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions," Catalysis Today, 101, 315-321 (2005).
    連結:
  59. [64] K. Vinodgopal, D. E. Wynkoop, P. V. Kamat, "Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light," Environmental Science & Technology, 30, 1660-1666 (1996).
    連結:
  60. [65] A. Sclafani, M. N. Mozzanega, P. Pichat, "Effect of silver deposits on the photocatalytic activity of titanium-dioxide samples for the dehydrogenation or oxidation of 2-propanol," Journal of Photochemistry and Photobiology a-Chemistry, 59, 181-189 (1991).
    連結:
  61. [66] V. Subramanian, E. Wolf, P. V. Kamat, "Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films?," Journal of Physical Chemistry B, 105, 11439-11446 (2001).
    連結:
  62. [67] J. Disdier, J. M. Herrmann, P. Pichat, "Platinum titanium-dioxide catalysts - a photoconductivity study of electron-transfer from the ultraviolet-illuminated support to the metal and of the influence of hydrogen," Journal of the Chemical Society-Faraday Transactions I, 79, 651-660 (1983).
    連結:
  63. [68] J. M. Herrmann, J. Disdier, P. Pichat, "Photoassisted platinum deposition on TiO2 powder using various platinum complexes," Journal of Physical Chemistry, 90, 6028-6034 (1986).
    連結:
  64. [69] J. M. Herrmann, H. Tahiri, Y. AitIchou, G. Lassaletta, A. R. GonzalezElipe, A. Fernandez, "Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz," Applied Catalysis B-Environmental, 13, 219-228 (1997).
    連結:
  65. [70] V. Subramanian, E. E. Wolf, P. V. Kamat, "Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration," Journal of the American Chemical Society, 126, 4943-4950 (2004).
    連結:
  66. [71] H. M. Sung-Suh, J. R. Choi, H. J. Hah, S. M. Koo, Y. C. Bae, "Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation," Journal of Photochemistry and Photobiology a-Chemistry, 163, 37-44 (2004).
    連結:
  67. [72] J. G. Yu, J. F. Xiong, B. Cheng, S. W. Liu, "Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity," Applied Catalysis B-Environmental, 60, 211-221 (2005).
    連結:
  68. [73] T. Hirakawa, P. V. Kamat, "Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation," Journal of the American Chemical Society, 127, 3928-3934 (2005).
    連結:
  69. [74] N. Jaffrezicrenault, P. Pichat, A. Foissy, R. Mercier, "Effect of deposited platinum particles on the surface charge of titania aqueous suspensions by potentiometry, electrophoresis, and labeled-ion adsorption," Journal of Physical Chemistry, 90, 2733-2738 (1986).
    連結:
  70. [75] Phillip Christopher, Hongliang Xin, Suljo Linic, "Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures," Nature Chemistry, 3, 467-472 (2011).
    連結:
  71. [76] G. L. Puma, P. L. Yue, "A laminar falling film slurry photocatalytic reactor. Part II - experimental validation of the model," Chemical Engineering Science, 53, 3007-3021 (1998).
    連結:
  72. [77] P. Mulvaney, "Surface plasmon spectroscopy of nanosized metal particles," Langmuir, 12, 788-800 (1996).
    連結:
  73. [78] E. Hutter, J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced Materials, 16, 1685-1706 (2004).
    連結:
  74. [79] M. A. Garcia, "Surface plasmons in metallic nanoparticles: fundamentals and applications," Journal of Physics D-Applied Physics, 44 (2011).
    連結:
  75. [80] D. P. Tsai, J. Kovacs, Z. H. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, R. Botet, "Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters," Physical Review Letters, 72, 4149-4152 (1994).
    連結:
  76. [81] Y. F. Chau, D. P. Tsai, "Three-dimensional analysis of silver nano-particles doping effects on super resolution near-field structure," Optics Communications, 269, 389-394 (2007).
    連結:
  77. [82] F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, D. P. Tsai, "Nonlinear optical absorption in the AgOx-type super-resolution near-field structure," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 40, 4101-4102 (2001).
    連結:
  78. [84] S. N. Frank, A. J. Bard, "Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders," Journal of Physical Chemistry, 81, 1484-1488 (1977).
    連結:
  79. [85] S. N. Frank, A. J. Bard, "Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder," Journal of the American Chemical Society, 99, 303-304 (1977).
    連結:
  80. [87] V. B. Manilal, A. Haridas, R. Alexander, G. D. Surender, "Photocatalytic treatment of toxic organics in waste-water - Toxicity of photodegradation products," Water Research, 26, 1035-1038 (1992).
    連結:
  81. [88] O. Legrini, E. Oliveros, A. M. Braun, "Photochemical processes for water treatment," Chemical Reviews, 93, 671-698 (1993).
    連結:
  82. [89] A. E. Cassano, C. A. Martin, R. J. Brandi, O. M. Alfano, "Photoreactor analysis and design - Fundamentals and applications," Industrial & Engineering Chemistry Research, 34, 2155-2201 (1995).
    連結:
  83. [90] S. M. Rodriguez, C. Richter, J. B. Galvez, M. Vincent, "Photocatalytic degradation of industrial residual waters," Solar Energy, 56, 401-410 (1996).
    連結:
  84. [91] P. R. Gogate, A. B. Pandit, "Sonophotocatalytic reactors for wastewater treatment: A critical review," Aiche Journal, 50, 1051-1079 (2004).
    連結:
  85. [92] P. R. Gogate, A. B. Pandit, "A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions," Advances in Environmental Research, 8, 501-551 (2004).
    連結:
  86. [93] L. Zou, Y. C. Li, E. Hu, "Photocatalytic decolorization of lanasol blue CE dye solution using a flat-plate reactor," Journal of Environmental Engineering-Asce, 131, 102-107 (2005).
    連結:
  87. [94] V. Augugliaro, M. Litter, L. Palmisano, J. Soria, "The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance," Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 7, 127-144 (2006).
    連結:
  88. [95] J. C. Crittenden, J. B. Liu, D. W. Hand, D. L. Perram, "Photocatalytic oxidation of chlorinated hydrocarbons in water," Water Research, 31, 429-438 (1997).
    連結:
  89. [96] R. F. P. Nogueira, W. F. Jardim, "TiO2-fixed-bed reactor for water decontamination using solar light," Solar Energy, 56, 471-477 (1996).
    連結:
  90. [97] Y. Parent, D. Blake, K. MagriniBair, C. Lyons, C. Turchi, A. Watt, E. Wolfrum, M. Prairie, "Solar photocatalytic processes for the purification of water: State of development and barriers to commercialization," Solar Energy, 56, 429-437 (1996).
    連結:
  91. [98] H. de Lasa, B. Serrano, M. Salaices, Novel Photocatalytic Reactors for Water and Air Treatment, Springer US (2005).
    連結:
  92. [99] P. S. Mukherjee, A. K. Ray, "Major challenges in the design of a large-scale photocatalytic reactor for water treatment," Chemical Engineering & Technology, 22, 253-260 (1999).
    連結:
  93. [100] R. L. Pozzo, M. A. Baltanas, A. E. Cassano, "Towards a precise assessment of the performance of supported photocatalysts for water detoxification processes," Catalysis Today, 54, 143-157 (1999).
    連結:
  94. [101] P. Wyness, J. F. Klausner, D. Y. Goswami, K. S. Schanze, "Performance of nonconcentrating solar photocatalytic oxidation reactors. 1. Flat-plate configuration," Journal of Solar Energy Engineering-Transactions of the Asme, 116, 2-7 (1994).
    連結:
  95. [102] R. W. Matthews, S. R. McEvoy, "Destruction of Phenol in Water with Sun, Sand, and Photocatalysis," Solar Energy, 49, 507-513 (1992).
    連結:
  96. [105] S. Kagaya, K. Shimizu, R. Arai, K. Hasegawa, "Separation of titanium dioxide photocatalyst in its aqueous suspensions by coagulation with basic aluminium chloride," Water Research, 33, 1753-1755 (1999).
    連結:
  97. [106] R. J. Watts, S. H. Kong, W. Lee, "Sedimentation and reuse of titanium-dioxide - Application to suspended-photocatalyst reactors," Journal of Environmental Engineering-Asce, 121, 730-735 (1995).
    連結:
  98. [107] K. J. Buechler, C. H. Nam, T. M. Zawistowski, R. D. Noble, C. A. Koval, "Design and evaluation of a novel-controlled periodic illumination reactor to study photocatalysis," Industrial & Engineering Chemistry Research, 38, 1258-1263 (1999).
    連結:
  99. [108] A. Haarstrick, O. M. Kut, E. Heinzle, "TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor," Environmental Science & Technology, 30, 817-824 (1996).
    連結:
  100. [109] T. A. McMurray, J. A. Byrne, P. S. M. Dunlop, J. G. M. Winkelman, B. R. Eggins, E. T. McAdams, "Intrinsic kinetics of photocatalytic oxidation of formic and oxalic acid on immobilised TiO2 films," Applied Catalysis a-General, 262, 105-110 (2004).
    連結:
  101. [110] N. J. Peill, M. R. Hoffmann, "Development and optimization of a TiO2 coated fiberoptic cable reactor - photocatalytic degradation of 4-chlorophenol," Environmental Science & Technology, 29, 2974-2981 (1995).
    連結:
  102. [111] G. B. Raupp, J. A. Nico, S. Annangi, R. Changrani, R. Annapragada, "Two-flux radiation-field model for an annular packed-bed photocatalytic oxidation reactor," Aiche Journal, 43, 792-801 (1997).
    連結:
  103. [112] A. Toyoda, L. F. Zhang, T. Kanki, N. Sano, "Degradation of phenol in aqueous solution by TiO2 photocatalyst coated rotating-drum reactor," Journal of Chemical Engineering of Japan, 33, 188-191 (2000).
    連結:
  104. [114] R. Borello, C. Minero, E. Pramauro, E. Pelizzetti, N. Serpone, H. Hidaka, "Photocatalytic degradation of DDT mediated in aqueous semiconductor slurries by simulated sunlight," Environmental Toxicology and Chemistry, 8, 997-1002 (1989).
    連結:
  105. [115] R. I. Bickley, M. J. Slater, W. J. Wang, "Engineering development of a photocatalytic reactor for waste water treatment," Process Safety and Environmental Protection, 83, 205-216 (2005).
    連結:
  106. [116] T. Van Gerven, G. Mul, J. Moulijn, A. Stankiewicz, "A review of intensification of photocatalytic processes," Chemical Engineering and Processing, 46, 781-789 (2007).
    連結:
  107. [117] C. McCullagh, N. Skillen, M. Adams, P. K. J. Robertson, "Photocatalytic reactors for environmental remediation: a review," Journal of Chemical Technology and Biotechnology, 86, 1002-1017 (2011).
    連結:
  108. [118] D. F. Ollis, Solar assisted photocatalysis for water purification, issues, data, questions, Kluwer Acadmic 593-622 (1991).
    連結:
  109. [119] B. Serrano, H. deLasa, "Photocatalytic degradation of water organic pollutants. Kinetic modeling and energy efficiency," Industrial & Engineering Chemistry Research, 36, 4705-4711 (1997).
    連結:
  110. [120] L. F. Zhang, T. Kanki, N. Sano, A. Toyoda, "Development of TiO2 photocatalyst reaction for water purification," Separation and Purification Technology, 31, 105-110 (2003).
    連結:
  111. [121] R. Andreozzi, V. Caprio, A. Insola, G. Longo, V. Tufano, "Photocatalytic oxidation of 4-nitrophenol in aqueous TiO2 slurries: an experimental validation of literature kinetic models," Journal of Chemical Technology and Biotechnology, 75, 131-136 (2000).
    連結:
  112. [122] L. Davydov, S. E. Pratsinis, P. G. Smirniotis, "The intrinsic catalytic activity in photoreactors," Environmental Science & Technology, 34, 3435-3442 (2000).
    連結:
  113. [123] L. Davydov, P. G. Smirniotis, S. E. Pratsinis, "Novel differential reactor for the measurement of overall quantum yields," Industrial & Engineering Chemistry Research, 38, 1376-1383 (1999).
    連結:
  114. [124] R. M. Alberici, W. F. Jardim, "Photocatalytic degradation of phenol and chlorinated phenols using Ag-TiO2 in a slurry reactor," Water Research, 28, 1845-1849 (1994).
    連結:
  115. [125] D. W. Chen, A. K. Ray, "Photocatalytic kinetics of phenol and its derivatives over UV irradiated TiO2," Applied Catalysis B-Environmental, 23, 143-157 (1999).
    連結:
  116. [126] D. W. Chen, A. K. Ray, "Photodegradation kinetics of 4-nitrophenol in TiO2 suspension," Water Research, 32, 3223-3234 (1998).
    連結:
  117. [127] A. K. Ray, Aacm Beenackers, "Novel swirl-flow reactor for kinetic studies of semiconductor photocatalysis," Aiche Journal, 43, 2571-2578 (1997).
    連結:
  118. [128] J. G. Sczechowski, C. A. Koval, R. D. Noble, "A Taylor Vortex reactor for heterogeneous photocatalysis," Chemical Engineering Science, 50, 3163-3173 (1995).
    連結:
  119. [129] M. F. Kabir, A. K. Ray, "Performance enhancement of a chemical reactor utilizing flow instability," Journal of Chemical Technology and Biotechnology, 78, 314-320 (2003).
    連結:
  120. [130] N. K. V. Leitner, E. LeBras, E. Foucault, J. L. Bousgarbies, "A new photochemical reactor design for the treatment of absorbing solutions," Water Science and Technology, 35, 215-222 (1997).
    連結:
  121. [131] G. L. Puma, P. L. Yue, "Comparison of the effectiveness of photon-based oxidation processes in a pilot falling film photoreactor," Environmental Science & Technology, 33, 3210-3216 (1999).
    連結:
  122. [132] G. L. Puma, P. L. Yue, "Modelling and design of thin-film slurry photocatalytic reactors for water purification," Chemical Engineering Science, 58, 2269-2281 (2003).
    連結:
  123. [133] G. L. Puma, P. L. Yue, "Enhanced photocatalysis in a pilot laminar falling film slurry reactor," Industrial & Engineering Chemistry Research, 38, 3246-3254 (1999).
    連結:
  124. [134] G. L. Puma, P. L. Yue, "A laminar falling film slurry photocatalytic reactor. Part I - model development," Chemical Engineering Science, 53, 2993-3006 (1998).
    連結:
  125. [135] G. L. Puma, P. L. Yue, "A novel fountain photocatalytic reactor: model development and experimental validation," Chemical Engineering Science, 56, 2733-2744 (2001).
    連結:
  126. [136] C. F. Lo, J. C. S. Wu, "Preparation and characterization of TiO2-coated optical-fiber in a photo reactor," Journal of the Chinese Institute of Chemical Engineers, 36, 119-126 (2005).
    連結:
  127. [137] N. J. Peill, M. R. Hoffmann, "Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis," Environmental Science & Technology, 32, 398-404 (1998).
    連結:
  128. [138] N. J. Peill, M. R. Hoffmann, "Solar-powered photocatalytic fiber-optic cable reactor for waste stream remediation," Journal of Solar Energy Engineering-Transactions of the Asme, 119, 229-236 (1997).
    連結:
  129. [139] H. F. Lin, K. T. Valsaraj, "Development of an optical fiber monolith reactor for photocatalytic wastewater Treatment," Journal of Applied Electrochemistry, 35, 699-708 (2005).
    連結:
  130. [140] A. K. Ray, Aacm Beenackers, "Development of a new photocatalytic reactor for water purification," Catalysis Today, 40, 73-83 (1998).
    連結:
  131. [141] H. Alekabi, N. Serpone, E. Pelizzetti, C. Minero, M. A. Fox, R. B. Draper, "Kinetic studies in heterogeneous photocatalysis .2. TiO2-mediated degradation of 4-chlorophenol alone and in a 3-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in air-equilibrated aqueous-media," Langmuir, 5, 250-255 (1989).
    連結:
  132. [142] A. K. Ray, Aacm Beenackers, "Novel photocatalytic reactor for water purification," Aiche Journal, 44, 477-483 (1998).
    連結:
  133. [143] N. A. Hamill, L. R. Weatherley, C. Hardacre, "Use of a batch rotating photocatalytic contactor for the degradation of organic pollutants in wastewater," Applied Catalysis B-Environmental, 30, 49-60 (2001).
    連結:
  134. [144] L. F. Zhang, T. Kanki, N. Sano, A. Toyoda, "Photocatalytic degradation of organic compounds in aqueous solution by a TiO2-coated rotating-drum reactor using solar light," Solar Energy, 70, 331-337 (2001).
    連結:
  135. [145] H. C. Yatmaz, C. Wallis, C. R. Howarth, "The spinning disc reactor - studies on a novel TiO2 photocatalytic reactor," Chemosphere, 42, 397-403 (2001).
    連結:
  136. [146] D. D. Dionysiou, A. A. Burbano, M. T. Suidan, I. Baudin, J. M. Laine, "Effect of oxygen in a thin-film rotating disk photocatalytic reactor," Environmental Science & Technology, 36, 3834-3843 (2002).
    連結:
  137. [147] D. D. Dionysiou, M. T. Suidan, I. Baudin, J. M. Laine, "Oxidation of organic contaminants in a rotating disk photocatalytic reactor: reaction kinetics in the liquid phase and the role of mass transfer based on the dimensionless Damkohler number," Applied Catalysis B-Environmental, 38, 1-16 (2002).
    連結:
  138. [148] D. Dionysiou, A. P. Khodadoust, A. M. Kern, M. T. Suidan, I. Baudin, J. M. Laine, "Continuous-mode photocatalytic degradation of chlorinated phenols and pesticides in water using a bench-scale TiO2 rotating disk reactor," Applied Catalysis B-Environmental, 24, 139-155 (2000).
    連結:
  139. [149] D. D. Dionysiou, G. Balasubramanian, M. T. Suidan, A. P. Khodadoust, I. Baudin, M. Laine, "Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water," Water Research, 34, 2927-2940 (2000).
    連結:
  140. [150] D. D. Dionysiou, M. T. Suidan, I. Baudin, J. M. Laine, "Effect of hydrogen peroxide on the destruction of organic contaminants-synergism and inhibition in a continuous-mode photocatalytic reactor," Applied Catalysis B-Environmental, 50, 259-269 (2004).
    連結:
  141. [151] C. Y. Chang, N. L. Wu, "Process analysis on photocatalyzed dye decomposition for water treatment with TiO2-coated rotating disk reactor," Industrial & Engineering Chemistry Research, 49, 12173-12179 (2010).
    連結:
  142. [152] K. J. Buechler, T. M. Zawistowski, R. D. Noble, C. A. Koval, "Investigation of the mechanism for the controlled periodic illumination effect in TiO2 photocatalysis," Industrial & Engineering Chemistry Research, 40, 1097-1102 (2001).
    連結:
  143. [153] U. Kreibig, L. Genzel, "Optical absorption of small metallic particles," Surface Science, 156, 678-700 (1985).
    連結:
  144. [154] M. A. El-Sayed, "Some interesting properties of metals confined in time and nanometer space of different shapes," Accounts of Chemical Research, 34, 257-264 (2001).
    連結:
  145. [155] R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, "Photoinduced conversion of silver nanospheres to nanoprisms," Science, 294, 1901-1903 (2001).
    連結:
  146. [156] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," Journal of Chemical Physics, 116, 6755-6759 (2002).
    連結:
  147. [157] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," Journal of Physical Chemistry B, 107, 668-677 (2003).
    連結:
  148. [158] L. L. Zhao, K. L. Kelly, G. C. Schatz, "The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width," Journal of Physical Chemistry B, 107, 7343-7350 (2003).
    連結:
  149. [159] D. D. Evanoff, G. Chumanov, "Size-controlled synthesis of nanoparticles. 1. "Silver-only" aqueous suspensions via hydrogen reduction," Journal of Physical Chemistry B, 108, 13948-13956 (2004).
    連結:
  150. [160] A. S. Kumbhar, M. K. Kinnan, G. Chumanov, "Multipole plasmon resonances of submicron silver particles," Journal of the American Chemical Society, 127, 12444-12445 (2005).
    連結:
  151. [161] S. Malynych, G. Chumanov, "Extinction spectra of quasi-spherical silver sub-micron particles," Journal of Quantitative Spectroscopy & Radiative Transfer, 106, 297-303 (2007).
    連結:
  152. [162] L. M. Liz-Marzan, "Tailoring surface plasmons through the morphology and assembly of metal nanoparticles," Langmuir, 22, 32-41 (2006).
    連結:
  153. [163] P. K. Jain, K. S. Lee, I. H. El-Sayed, M. A. El-Sayed, "Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine," Journal of Physical Chemistry B, 110, 7238-7248 (2006).
    連結:
  154. [165] W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, 424, 824-830 (2003).
    連結:
  155. [166] J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, R. L. Letsinger, "One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes," Journal of the American Chemical Society, 120, 1959-1964 (1998).
    連結:
  156. [167] I. Tanahashi, H. Iwagishi, G. Chang, "Localized surface plasmon resonance sensing properties of photocatalytically prepared Au/TiO2 films," Materials Letters, 62, 2714-2716 (2008).
    連結:
  157. [168] Y. Tian, T. Tatsuma, "Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles," Journal of the American Chemical Society, 127, 7632-7637 (2005).
    連結:
  158. [169] Y. Tian, T. Tatsuma, "Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2," Chemical Communications, 1810-1811 (2004).
    連結:
  159. [170] K. Matsubara, K. L. Kelly, N. Sakai, T. Tatsuma, "Plasmon resonance-based photoelectrochemical tailoring of spectrum, morphology and orientation of Ag nanoparticles on TiO2 single crystals," Journal of Materials Chemistry, 19, 5526-5532 (2009).
    連結:
  160. [171] K. Matsubara, T. Tatsuma, "Morphological changes and multicolor photochromism of Ag nanoparticles deposited on single-crystalline TiO2 surfaces," Advanced Materials, 19, 2802-2806 (2007).
    連結:
  161. [172] K. Kawahara, K. Suzuki, Y. Ohka, T. Tatsuma, "Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism," Physical Chemistry Chemical Physics, 7, 3851-3855 (2005).
    連結:
  162. [173] K. Naoi, Y. Ohko, T. Tatsuma, "TiO2 films loaded with silver nanoparticles: Control of multicolor photochromic behavior," Journal of the American Chemical Society, 126, 3664-3668 (2004).
    連結:
  163. [175] X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, "Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods," Journal of the American Chemical Society, 128, 2115-2120 (2006).
    連結:
  164. [176] R. C. Jin, Y. C. Cao, E. C. Hao, G. S. Metraux, G. C. Schatz, C. A. Mirkin, "Controlling anisotropic nanoparticle growth through plasmon excitation," Nature, 425, 487-490 (2003).
    連結:
  165. [177] Y. W. C. Cao, R. C. Jin, C. A. Mirkin, "Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection," Science, 297, 1536-1540 (2002).
    連結:
  166. [178] K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, R. P. Van Duyne, "Toward a glucose biosensor based on surface-enhanced Raman scattering," Journal of the American Chemical Society, 125, 588-593 (2003).
    連結:
  167. [179] X. Chen, H. Y. Zhu, J. C. Zhao, Z. T. Zheng, X. P. Gao, "Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports," Angewandte Chemie-International Edition, 47, 5353-5356 (2008).
    連結:
  168. [180] S. M. Sun, W. Z. Wang, L. Zhang, M. Shang, L. Wang, "Ag@C core/shell nanocomposite as a highly efficient plasmonic photocatalyst," Catalysis Communications, 11, 290-293 (2009).
    連結:
  169. [181] Huai Yong Zhu, Xi Chen, Zhan Feng Zheng, Xue Bin Ke, Esa Jaatinen, Jin Cai Zhao, Cheng Guo, Teng Feng Xie, De Jun Wang, "Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation," Chemical Communications, 7524-7526 (2009).
    連結:
  170. [182] X. Chen, Z. F. Zheng, X. B. Ke, E. Jaatinen, T. F. Xie, D. J. Wang, C. Guo, J. C. Zhao, H. Y. Zhu, "Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation," Green Chemistry, 12, 414-419 (2010).
    連結:
  171. [183] P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, J. Y. Wei, M. H. Whangbo, "Ag@AgCl: A highly efficient and stable photocatalyst active under visible light," Angewandte Chemie-International Edition, 47, 7931-7933 (2008).
    連結:
  172. [184] P. Wang, B. B. Huang, X. Y. Zhang, X. Y. Qin, H. Jin, Y. Dai, Z. Y. Wang, J. Y. Wei, J. Zhan, S. Y. Wang, J. P. Wang, M. H. Whangbo, "Highly efficient visible-light plasmonic photocatalyst Ag@AgBr," Chemistry-a European Journal, 15, 1821-1824 (2009).
    連結:
  173. [185] P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, M. H. Whangbo, "Ag/AgBr/WO3 center dot H2O: Visible-Light Photocatalyst for Bacteria Destruction," Inorganic Chemistry, 48, 10697-10702 (2009).
    連結:
  174. [186] H. Y. Chuang, D. H. Chen, "Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles," Nanotechnology, 20, 1-10 (2009).
    連結:
  175. [187] J. G. Yu, G. P. Dai, B. B. Huang, "Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays," Journal of Physical Chemistry C, 113, 16394-16401 (2009).
    連結:
  176. [188] M. Choi, K. H. Shin, J. Jang, "Plasmonic photocatalytic system using silver chloride/silver nanostructures under visible light," Journal of Colloid and Interface Science, 341, 83-87 (2010).
    連結:
  177. [189] C. H. An, S. N. Peng, Y. G. Sun, "Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst," Advanced Materials, 22, 2570-2574 (2010).
    連結:
  178. [190] Ewa Kowalska, Orlando Omar Prieto Mahaney, Ryu Abe, Bunsho Ohtani, "Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces," Physical Chemistry Chemical Physics, 12, 2344-2355 (2010).
    連結:
  179. [192] Claudia Gomes Silva, Raquel Juarez, Tiziana Marino, Raffaele Molinari, Hermenegildo Garcia, "Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water," Journal of the American Chemical Society, 133, 595-602 (2011).
    連結:
  180. [193] K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida, T. Watanabe, "A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide," Journal of the American Chemical Society, 130, 1676-1680 (2008).
    連結:
  181. [194] B. K. Min, J. E. Heo, N. K. Youn, O. S. Joo, H. Lee, J. H. Kim, H. S. Kim, "Tuning of the photocatalytic 1,4-dioxane degradation with surface plasmon resonance of gold nanoparticles on titania," Catalysis Communications, 10, 712-715 (2009).
    連結:
  182. [195] Phillip Christopher, David B. Ingram, Suljo Linic, "Enhancing photochemical activity of semiconductor nanoparticles with optically active Ag nanostructures: photochemistry mediated by Ag surface plasmons," Journal of Physical Chemistry C, 114, 9173-9177 (2010).
    連結:
  183. [196] Jiun Jen Chen, Jeffrey C. S. Wu, Pin Chieh Wu, Din Ping Tsai, "Plasmonic photocatalyst for H2 evolution in photocatalytic water splitting," Journal of Physical Chemistry C, 115, 210-216 (2011).
    連結:
  184. [197] Zuwei Liu, Wenbo Hou, Prathamesh Pavaskar, Mehmet Aykol, Stephen B. Cronin, "Plasmon resonant enhancement of photocatalytic water splitting under visible illumination," Nano Letters, 11, 1111-1116 (2011).
    連結:
  185. [198] A. Kubacka, M. L. Cerrada, C. Serrano, M. Fernandez-Garcia, M. Ferrer, "Plasmonic nanoparticle/polymer nanocomposites with enhanced photocatalytic antimicrobial properties," Journal of Physical Chemistry C, 113, 9182-9190 (2009).
    連結:
  186. [199] James R. Adleman, David A. Boyd, David G. Goodwin, Demetri Psaltis, "Heterogenous catalysis mediated by plasmon heating," Nano Letters, 9, 4417-4423 (2009).
    連結:
  187. [200] L. C. Du, A. Furube, K. Yamamoto, K. Hara, R. Katoh, M. Tachiya, "Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size," Journal of Physical Chemistry C, 113, 6454-6462 (2009).
    連結:
  188. [201] Chun Wan Yen, Mostafa A. El-Sayed, "Plasmonic field effect on the hexacyanoferrate (III)-thiosulfate electron transfer catalytic reaction on gold nanoparticles: electromagnetic or thermal?," Journal of Physical Chemistry C, 113, 19585-19590 (2009).
    連結:
  189. [202] I. Angelini, G. Artioli, P. Bellintani, V. Diella, M. Gemmi, A. Polla, A. Rossi, "Chemical analyses of Bronze Age glasses from Frattesina di Rovigo, Northern Italy," Journal of Archaeological Science, 31, 1175-1184 (2004).
    連結:
  190. [203] D. J. Barber, I. C. Freestone, "An investigation of the origin of the color of the Lycurgus Cup by analytical transmission electron microscopy," Archaeometry, 32, 33-45 (1990).
    連結:
  191. [204] I. Freestone, N. Meeks, M. Sax, C. Higgitt, "The Lycurgus Cup - A Roman nanotechnology," Gold Bulletin, 40, 270-277 (2007).
    連結:
  192. [206] J. A. Creighton, D. G. Eadon, "Ultraviolet–visible absorption spectra of the colloidal metallic elements," Journal of the Chemical Society-Faraday Transactions, 87, 3881-3891 (1991).
    連結:
  193. [207] C. A. Leatherdale, W. K. Woo, F. V. Mikulec, M. G. Bawendi, "On the absorption cross section of CdSe nanocrystal quantum dots," Journal of Physical Chemistry B, 106, 7619-7622 (2002).
    連結:
  194. [208] W. L. Jia, E. P. Douglas, F. G. Guo, W. F. Sun, "Optical limiting of semiconductor nanoparticles for nanosecond laser pulses," Applied Physics Letters, 85, 6326-6328 (2004).
    連結:
  195. [209] R. A. Dynich, A. N. Ponyavina, "Effect of metallic nanoparticle sizes on the local field near their surface," Journal of Applied Spectroscopy, 75, 832-838 (2008).
    連結:
  196. [210] E. Prodan, C. Radloff, N. J. Halas, P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, 302, 419-422 (2003).
    連結:
  197. [211] J. Ye, P. Van Dorpe, L. Lagae, G. Maes, G. Borghs, "Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures," Nanotechnology, 20 (2009).
    連結:
  198. [214] H. Wang, D. W. Brandl, F. Le, P. Nordlander, N. J. Halas, "Nanorice: A hybrid plasmonic nanostructure," Nano Letters, 6, 827-832 (2006).
    連結:
  199. [215] C. L. Nehl, H. W. Liao, J. H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Letters, 6, 683-688 (2006).
    連結:
  200. [216] H. J. Chen, X. S. Kou, Z. Yang, W. H. Ni, J. F. Wang, "Shape- and size-dependent refractive index sensitivity of gold nanoparticles," Langmuir, 24, 5233-5237 (2008).
    連結:
  201. [217] Kazuo Watanabe, Dietrich Menzel, Niklas Nilius, Hans-Joachim Freund, "Photochemistry on metal nanoparticles," Chemical Reviews, 106, 4301-4320 (2006).
    連結:
  202. [220] H. Alekabi, N. Serpone, "Kinetic studies in heterogeneous photocatalysis .1. photocatalytic degradation of chlorinated phenols in aerated aqueous-solutions over TiO2 supported on a glass matrix," Journal of Physical Chemistry, 92, 5726-5731 (1988).
    連結:
  203. [221] R. W. Matthews, S. R. McEvoy, "Photocatalytic degradation of phenol in the presence of near-UV illuminated titanium-dioxide," Journal of Photochemistry and Photobiology a-Chemistry, 64, 231-246 (1992).
    連結:
  204. [222] D. F. Ollis, "Contaminant degradation in water," Environmental Science & Technology, 19, 480-484 (1985).
    連結:
  205. [223] K. V. K. Boodhoo, R. J. Jachuck, "Process intensification: spinning disc reactor for condensation polymerisation," Green Chemistry, 2, 235-244 (2000).
    連結:
  206. [224] I. Leshev, G. Peev, "Film flow on a horizontal rotating disk," Chemical Engineering and Processing, 42, 925-929 (2003).
    連結:
  207. [225] T. G. Myers, M. Lombe, "The importance of the Coriolis force on axisymmetric horizontal rotating thin film flows," Chemical Engineering and Processing, 45, 90-98 (2006).
    連結:
  208. [226] J. W. Rauscher, R. E. Kelly, J. D. Cole, "Asymptotic solution for laminar-flow of a thin-film on a rotating-disk," Journal of Applied Mechanics-Transactions of the Asme, 40, 43-47 (1973).
    連結:
  209. [227] A. G. Emslie, F. T. Bonner, L. G. Peck, "Flow of a viscous liquid on a rotating disk," Journal of Applied Physics, 29, 858-862 (1958).
    連結:
  210. [229] D. F. Ollis, E. Pelizzetti, N. Serpone, "Photocatalyzed destruction of water contaminants," Environmental Science & Technology, 25, 1522-1529 (1991).
    連結:
  211. [230] O. M. Alfano, D. Bahnemann, A. E. Cassano, R. Dillert, R. Goslich, "Pphotocatalysis in water environments using artificial and solar light," Catalysis Today, 58, 199-230 (2000).
    連結:
  212. [231] O. K. Varghese, D. W. Gong, M. Paulose, C. A. Grimes, E. C. Dickey, "Crystallization and high-temperature structural stability of titanium oxide nanotube arrays," Journal of Materials Research, 18, 156-165 (2003).
    連結:
  213. [232] G. K. Mor, K. Shankar, O. K. Varghese, C. A. Grimes, "Photoelectrochemical properties of titania nanotubes," Journal of Materials Research, 19, 2989-2996 (2004).
    連結:
  214. [233] Y. K. Lai, L. Sun, C. Chen, C. G. Nie, J. Zuo, C. J. Lin, "Optical and electrical characterization of TiO2 nanotube arrays on titanium substrate," Applied Surface Science, 252, 1101-1106 (2005).
    連結:
  215. [235] C. Baiocchi, M. C. Brussino, E. Pramauro, A. B. Prevot, L. Palmisano, G. Marci, "Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV-VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry," International Journal of Mass Spectrometry, 214, 247-256 (2002).
    連結:
  216. [236] B. N. J. Persson, "Polarizability of small spherical metal particles - influence of the matrix environment," Surface Science, 281, 153-162 (1993).
    連結:
  217. [237] V. K. Pustovalov, "Theoretical study of heating of spherical nanoparticle in media by short laser pulses," Chemical Physics, 308, 103-108 (2005).
    連結:
  218. [1] A. Mills, S. LeHunte, "An overview of semiconductor photocatalysis," Journal of Photochemistry and Photobiology a-Chemistry, 108, 1-35 (1997).
  219. [16] A. Fujishima, T. N. Rao, D. A. Tryk, "Titanium dioxide photocatalysis," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21 (2000).
  220. [28] A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis: Fundamentals and Application, BKC, Inc., Tokyo (1999).
  221. [38] E. Pelizzetti, C. Minero, V. Maurino, H. Hidaka, N. Serpone, R. Terzian, "Photocatalytic degradation of dodecane and of some dodecyl derivatives," Annali Di Chimica, 80, 81-87 (1990).
  222. [42] X. L. Li, Q. Peng, J. X. Yi, X. Wang, Y. D. Li, "Near monodisperse TiO2 nanoparticles and nanorods," Chemistry-a European Journal, 12, 2383-2391 (2006).
  223. [83] K. Hashimoto, H. Irie, A. Fujishima, "TiO2 photocatalysis: A historical overview and future prospects," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 44, 8269-8285 (2005).
  224. [86] L. Bousselmi, S. U. Geissen, H. Schroeder, "Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia," Water Science and Technology, 49, 331-337 (2004).
  225. [103] K. Sopajaree, S. A. Qasim, S. Basak, K. Rajeshwar, "An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part II: Experiments on the ultrafiltration unit and combined operation," Journal of Applied Electrochemistry, 29, 1111-1118 (1999).
  226. [104] K. Sopajaree, S. A. Qasim, S. Basak, K. Rajeshwar, "An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part I: Experiments and modelling of a batch-recirculated photoreactor," Journal of Applied Electrochemistry, 29, 533-539 (1999).
  227. [113] M. I. Cabrera, O. M. Alfano, A. E. Cassano, "Novel reactor for photocatalytic kinetic-studies," Industrial & Engineering Chemistry Research, 33, 3031-3042 (1994).
  228. [164] H. Wang, D. W. Brandl, P. Nordlander, N. J. Halas, "Plasmonic nanostructures: Artificial molecules," Accounts of Chemical Research, 40, 53-62 (2007).
  229. [174] S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, M. J. Natan, "Submicrometer metallic barcodes," Science, 294, 137-141 (2001).
  230. [191] P. Wang, B. B. Huang, Q. Q. Zhang, X. Y. Zhang, X. Y. Qin, Y. Dai, J. Zhan, J. X. Yu, H. X. Liu, Z. Z. Lou, "Highly efficient visible light plasmonic photocatalyst Ag@Ag(Br,I)," Chemistry-a European Journal, 16, 10042-10047 (2010).
  231. [205] G. Mie, "Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions," Annalen Der Physik, 25, 377-445 (1908).
  232. [212] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, F. J. G. de Abajo, "Optical properties of gold nanorings," Physical Review Letters, 90 (2003).
  233. [213] H. Wang, Y. P. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, N. J. Halas, "Symmetry breaking in individual plasmonic nanoparticles," Proceedings of the National Academy of Sciences of the United States of America, 103, 10856-10860 (2006).
  234. [218] B.D. Cullity, S.R. Stock, Elements of x-ray diffraction (3 ed.), Prentice Hall, Upper Saddle River (2001).
  235. [219] D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of instrumental analysis (6 ed.), Thomson Brooks/Cole, Belmont (2007).
  236. [228] G. F. Froment, K. B. Bischoff, Chemical reactor analysis and design (2 ed.), John Wiley & Sons, Sigapore 524-529 (1990).
  237. [234] D. W. Bahnemann, A. I. Kokoron. 2003. Chemical physics of nanostructured semiconductors. Eindhoven: VSP BV.