Title

溶菌酶復性程序效率提升之研究

Translated Titles

The Improvement of Efficiency in the Lysozyme Renaturation Process

Authors

陳勻錡

Key Words

蛋白質復性 ; 溶菌酶直接稀釋法 ; 大小排阻層析法 ; Chaperon solvent plug ; Protein renaturation ; Lysozyme ; Direct dilution ; Size exclusion chromatography ; Chaperon solvent plug

PublicationName

臺灣大學化學工程學研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

博士

Advisor

劉懷勝

Content Language

繁體中文

Chinese Abstract

在蛋白質復性程序中,錯誤的摺疊與聚集體的形成是使復性效率不能提高的主要原因,因此於傳統的直接稀釋復性法中,皆利用大量的復性劑降低蛋白質之濃度並且稀釋變性劑之濃度,以利蛋白質之復性。但於本研究中,利用透析復性法,證實除了錯誤的摺疊與聚集體之外,復性溶液中之還原態二硫代蘇糖醇(dithiothreitol,DTTred)亦是影響蛋白質復性效率的重要因子。有鑑於此,本研究提出一於低稀釋倍率下之高效率復性策略:亦即於低稀釋倍率下,藉由添加氧化態榖胱甘肽(glutathione,GSSG)與DTTred反應,進而提升最終復性產率為傳統操作之13倍,並同時降低操作成本為傳統操作成本之40 %。 此外,本研究亦利用大小排阻層析法(size exclusion chromatography,SEC)可以於復性初期即將影響復性效果之DTTred分離的特性,對高濃度蛋白質進行復性。為了避免蛋白質因濃度過高而於管柱前端形成聚集體影響復性,本研究提出chaperon solvent plug復性方法,並提出最適當之chaperon solvent plug體積及樣品載入之時間,有效地抑制注射閥與管柱間之聚集體形成,避免影響復性效率。並透過對多段式流速復性法及尿素梯度復性法之了解後,提出一較佳之SEC復性策略:在高流速及chaperon solvent plug之保護下,將變性蛋白質載入至系統中,待其進入至SEC管柱後,則於管柱內提供尿素梯度之環境以避免聚集體或錯誤摺疊之蛋白質的形成,並且藉由低流速之操作,增加蛋白質於低尿素濃度區域之滯留時間,使變性蛋白質摺疊回具有活性、正確構型之復性蛋白質。

English Abstract

Misfolding and aggregation are the main obstacles of refolding efficiency in protein renaturation process. With the conventional dilution refolding method, large amount of refolding buffer is required to prevent aggregation and to dilute denaturant. In this investigation, via dialysis, besides midfolding and aggregates, reduced dithiothreitol (DTTred) was also proved to be a crucial factor in renaturation. Thus, we proposed a low dilution factor and high efficiency refolding strategy by adding high oxidized glutathione (GSSG) in the refolding buffer to react with carry-over DTTred, resulting in a 13 times of productivity and 60 % reduction of cost, compared to the conventional dilution refolding process. Because of the benefit of separating DTTred in the beginning of renaturation, lysozyme could be refolded at high concentration by size exclusion chromatography (SEC). We further proposed the optimal volume of chaperon solvent plug and the loading time of sample to prevent aggregations before the column inlet. In addition, we also combined the chaperon solvent plug strategy, urea gradient strategy and step change of mobile phase flowrate strategy to offer an optimal SEC refolding environment. That is, at the beginning of injection, denatured lysozyme was loaded at a high flow rate with chaperon solvent plug. After denatured lyszoyme entered into the column inlet, low flow rate was adjusted to maintain enough retention time of denatured lysozyme in the urea gradient region and low urea concentration region to refold to active lysozyme.

Topic Category 工學院 > 化學工程學研究所
工程學 > 化學工業
Reference
  1. Anfinsen C.B., Anson M.L., Edsall J.T., Richards F.M., Advances in protein chemistry, Academic press, New York and London, 1968; 23; 122-127
  2. Anfinsen C.B., Haber E., Sela M., White F. H., Kinetics of formation of native ribonuclease during oxidation of reduced polypeptide chain, Proceedings of the national academy of sciences of the United States of America, 1961; 47; 1309-1314
  3. Anfinsen C.B., Principles that govern folding of protein chains, Science, 1973; 181; 223-230
  4. Armstrong F. B., Biochemistry, Oxford university press, New York, 1989
  5. Baldwin R.L., Rose G.D., Is protein folding hierarchic? II. Folding intermediates and transition states, Trends in biochemical sciences, 1999; 24; 77-83
  6. Baneyx F., Recombinant protein expression in Escherichia coli, Current opinion in biotechnology, 1999; 10; 411-421
  7. Batas B., Chaudhuri J.B., Considerations of sample application and elution during size-exclusion chromatography-based protein refolding, Journal of chromatography A, 1999; 864; 229-236
  8. Batas B., Chaudhuri J.B., Protein refolding at high concentration using size-exclusion chromatography, Biotechnology and bioengineering, 1996; 50; 17-23
  9. Batas B., Jones H.R., Chaudhuri J.B., Studies of the hydrodynamic volume changes that occur during refolding of lysozyme using size-exclusion chromatography, Journal of chromatography A, 1997; 766; 109-119
  10. Batas B., Schiraldi C., Chaudhuri J.B., Inclusion body purification and protein refolding using microfiltration and size exclusion chromatography, Biotechnology, 1999; 68; 149-158
  11. Benkerroum N. Antimicrobial activity of lysozyme with special relevance to milk, African journal of biotechnology 2008; 7; 4856-4867
  12. Blake C.C.F., Koenig D.F., Mair G.A., North A.C.T., Phillips D.C., Sarma V.R., Structure of hen egg-white lysozyme: a 3-dimensional fourier synthesis at 2a resolution, Nature, 1965; 206; 757-761
  13. Boys B.L., Konermann L., Folding and assembly of hemoglobin monitored by electrospray mass spectrometry using an on-line dialysis system, American society for mass spectrometry, 2007; 18; 8-16
  14. Bulaj G., Kortemme T., Goldenberg D.P., Ionization-reactivity relationships for cysteine thiols in polypeptides, Biochemistry, 1998; 37; 8965-8972
  15. Buswell A.M., Middelberg A.P.J., A new kinetic scheme for lysozyme refolding and aggregation, Biotechnology and Bioengineering, 2003; 83; 567-577
  16. Cabrita L.D., Dobson C.M., Christodoulou J., Protein folding on the ribosome, Current opinion in structural biology, 2010; 20; 33-45
  17. Campbell M. K., Biochemistry, Saunders college pub., Philadelphia, 1999
  18. Campbell M.K., Biochemistry, Thomson/Brooks/Cole, United States, 2009
  19. Canfield R.E., Liu A.K., Disulfide bonds of egg white lysozyme, Journal of biological chemistry, 1965; 240; 1997-2002
  20. Canfield R.E., Osserman E., Beychok S., Lysozyme, Academic press, New York, 1974.
  21. Cao P., Mei J.J., Diao Z.Y., Zhang S.Q., Expression, refolding, and characterization of human soluble BAFF synthesized in Escherichia coli, Protein expression and purification, 2005; 41; 199-206
  22. Castellanos I.J., Crespo R., Griebenow K., Poly(ethylene glycol) as stabilizer and emulsifying agent: a novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres, Journal of controlled release, 2003; 88; 135-145
  23. Chang C.C., Yeh X.C., Lee H.T., Lin P.Y., Kan L.S., Refolding of lysozyme by quasistatic and direct dilution reaction paths: a first-order-like state transition, Physical review E, 2004; 70; 011904
  24. Chen J., Liu Y., Li X., Wang Y., Ding H., Ma G., Su Z., Cooperative effects of urea and L-arginine on protein refolding, Protein expression and purification, 2009; 66; 82-90
  25. Chen Y. and Leong S.S.J., High productivity refolding of an inclusion body protein using pulsed-fed size exclusion chromatography, Process biochemistry, 2010; 45; 1570-1576
  26. Clark E.D., Protein refolding for industrial processes. Current opinion in biotechnology, 2001; 12; 202-207
  27. Clark E.D.B., Hevehan D., Szela S., Maachupalli-Reddy J., Oxidative renaturation of hen egg-white lysozyme. Folding vs aggregation, Biotechnology Progress, 1998; 14; 47-54
  28. Clark E.D.B., Refolding of recombinant proteins, Current opinion in biotechnology, 1998; 9; 157-163
  29. Cleland W.W., Dithiothreitol, a new protective reagent for SH groups, Biochemistry, 1964; 3; 480-482
  30. Creighton E.T., Protein folding coupled to disulphide-bond formation. Mechanisms of protein folding, Edited by R. H. Pain, 2000; 250-278
  31. Cunningham F.E., Proctor V.A., Goetsch S.J., Egg-white lysozyme as a food preservative, Worlds poultry science journal, 1991; 47; 141-163
  32. Delfini C., Cersosimo M., Del Prete V., Strano M., Gaetano G., Pagliara A., Ambro S., Resistance screening essay of wine lactic acid bacteria on lysozyme: efficacy of lysozyme in unclarified grape musts, Journal of agricultural and food chemistry, 2004; 52; 1861-1866
  33. Dickerson R.E., The structure and action of proteins, Harper & row, New York, 1969
  34. Ding Y., Chuan Y.P., He L., Middelberg A.P.J., Dispersive mixing and intraparticle partitioning of protein in size-exclusion chromatographic refolding, Journal of chromatography A, 2011; 1218; 8503-8510
  35. Dinner A.R., Sali A., Smith L.J., Dobson C.M., Karplus M., Understanding protein folding via free-energy surfaces from theory and experiment, Trends in biochemical sciences, 2000; 25; 331-339
  36. Divsalar A., Saboury A.A., Moosavi-Movahedi A.A., Mansoori-Torshizi H.,Comparative analysis of refolding of chemically denatured-lactoglobulin types A and B using the dilution additive mode, International journal of biological macromolecules, 2006; 38; 9-17
  37. Dobson C. M., Protein folding and misfolding, Nature, 2003; 426; 884-890
  38. Dobson C.M., Evans P.A., Radford S.E., Understanding how proteins fold: the lysozyme story so far, Trends in biochemical sciences, 1994; 19; 31-37
  39. Dong X.Y., Huang Y., Sun Y., Refolding kinetics of denatured-reduced lysozyme in the presence of folding aids, Journal of biotechnology, 2004; 114; 135-142
  40. Duan H.Y., Zeng X.D., Tang B.Y., Liu X.T., Lan G.H., Wei W.Z., Luo S.L. Cooperative effect of guanidinium chloride and urea on lysozyme refolding, Analytical letters, 2009; 42; 2625-263
  41. Englander S.W., Protein folding intermediates and pathways studied by hydrogen exchange, Annual review of biophysics and biomolecular structure, 2000; 29; 213-238
  42. Ersoy M., Matic S., Schmidt S.R., On-column refolding of corticotropin-releasing factor receptor 1 extracellular domain by size exclusion chromatography, Biomedical chromatography, 2009; 23; 1121-1128
  43. Esposito G., Garcia J., Mangione P., Giorgetti S., Corazza A., Viglino P., Chiti F., Andreola A., Dumy P., Booth D., Hawkins P.N., Bellotti V., Structural and folding dynamic properties of the T70N variant of human lysozyme, Journal of biological chemistry, 2003; 278; 25910-25918
  44. Fahlgren A., Hammarström S., Danielsson Å., Hammarström M.L., Increased expression of antimicrobial peptides and lysozyme in colonic epithelial cells of patients with ulcerative colitis, Clinical and experimental immunology, 2003; 131; 90-101
  45. Fan X.D., Xu D.S., Lu B., Xia J., Wei D.Z., Improving the refolding of NTA protein by urea gradient and arginine gradient size-exclusion chromatography, Journal of biochemical and biophysical methods, 2008; 70; 1130-1138
  46. Fan X.D., Xu D.S., Lu B., Xia J., Wei D.Z., Refolding and purification of rhNTA protein by chromatography, Biomedical chromatography, 2009; 23; 257-266
  47. Farshbaf M., Katoh Y., Morimoto T., Udaka T., Katsuda T., Katoh S., Control of aggregate formation in refolding of carbonic anhydrase at high urea concentrations and effects of urea removal, Journal of chemical engineering of Japan, 2001; 34; 743-747
  48. Fischer B., Sumner I., Goodenough P., Isolation, renaturation, and formation of disulfide bonds of eukaryotic proteins expressed in Escherichia-coli as inclusion-bodies, Biotechnology and bioengineering, 1993; 41; 3-13
  49. Fleming A. On a remarkable bacteriolytic element found in tissues and secretions, Proceedings of the royal society of London series b-containing papers of a biological character, 1922; 93; 306-317
  50. Freydell E.J., Bulsink Y., van Hateren S., van der Wielen L.A.M., Eppink M.H.M., Ottens M. Size-exclusion simulated moving bed chromatographic protein refolding, Chemical engineering science, 2010b; 65; 4701-4713
  51. Freydell E.J., van der Wielen L.A.M., Eppink M.H.M., Ottens M., Ion-exchange chromatographic protein refolding, Journal of chromatography A, 2010a; 1217; 7265-7274
  52. Freydell E.J., van der Wielen L.A.M., Eppink M.H.M., Ottens M., Size-exclusion chromatographic protein refolding fundamentals, modeling and operation, Journal of chromatography A, 2010c; 1217; 7723-7737
  53. Fursova K.K., Laman A.G., Melnik B.S., Semisotnov G.V., Kopylov P.Kh., Kiseleva N.V., Nesmeyanov V.A., Brovko F.A., Refolding of scFv mini-antibodies using size-exclusion chromatography via arginine solution layer, Journal of chromatography B, 2009; 877; 2045-2051
  54. Gao Y.G., Guan Y.X., Yao S.J., Cho M.G., Refolding of lysozyme at high concentration in batch and fed-batch operation, Korean journal of chemical engineering, 2002; 19; 871-875
  55. Garrett R., Biochemistry, Thomson Brooks/Cole, Belmont, Califonia, 2007
  56. Geng X., Wang C., Protein folding liquid chromatography and its recent developments, Journal of chromatography B, 2007; 849; 69-80
  57. Ghezzi P., Regulation of protein function by glutathionylation, Free radical research, 2005; 39; 573-580
  58. Goldberg M.E., Rudolph R., Jaenicke R., A kinetic study of the competition between renaturation and aggregation during the refolding of denatured reduced egg white lysozyme, Biochemistry, 1991; 30; 2790-2797
  59. Goto M., Fujita T., Sakono M., Furusaki S., Important parameters affecting efficiency of protein refolding by reversed micelles, Biotechnology progress, 2000; 16; 1079-1085
  60. Grznarova G., Polakovic M., Acai P., Gorner T., Extra-column dispersion of macromolecular solutes in aqueous-phase size-exclusion chromatography, Journal of chromatography A, 2004; 1040; 33-43
  61. Gu Z., Su Z., Janson J.C. Urea gradient size-exclusion chromatography enhanced the yield of lysozyme refolding, Journal of chromatography A, 2001; 918; 311-318
  62. Gu Z., Zhu X. N., Ni S.W., Zhou H.M., Su Z., Inhibition of aggregation by media selection, sample loading and elution in size exclusion chromatographic refolding of denatured bovine carbonic anhydrase B, Journal of biochemical and biophysical methods, 2003; 56; 165-175
  63. Gu Z.Y., Zhu X., Ni S.W., Su Z., Zhou H.M, Conformational changes of lysozyme refolding intermediates and implications for aggregation and renaturation, International journal of biochemistry & cell biology, 2004; 36; 795-805
  64. Guan Y.X., Pan H.X., Gao Y.G., Yao S.J., Cho M.G., Refolding and purification of recombinant human interferon-γ expressed as incousion bodies in Escherichia coli using size exclusion chromatography, Biotechnology and bioprocess engineering, 2005; 10; 122-127
  65. Gurbhele-Tupkar M.C., Perez L.R., Silva Y., Lees W.J., Rate enhancement of the oxidative folding of lysozyme by the use of aromatic thiol containing redox buffers, Bioorganic & medicinal chemistry, 2008; 16; 2579-2590
  66. Haber E., Anfinsen C.B., Regeneration of enzyme activity by air oxidation of reduced subtilisin-modified ribonuclease, Journal of biological chemistry, 1961; 236; 422-424
  67. Hagen A.J., Hatton T.A., Wang D.I.C., Protein refolding in reversed micelles, Biotechnology and bioengineering, 1990a; 35; 955-965
  68. Hagihara Y., Aimoto S., Fink A.L., Goto Y., Guanidine hydrochloride-induced folding of proteins, Journal of molecular biology, 1993; 231; 180-184
  69. Hamada H., Shiraki K., L-argininamide improves the refolding more effectively than L-arginine, Journal of biotechnology, 2007; 130; 153-160
  70. Harrowing S. R., Chaudhuri J.B., Effect of column dimensions and flow rates on size-exclusion refolding of beta-lactamase, Journal of biochemical and biophysical methods, 2003; 56; 177-188
  71. Hash J. H., Lysozyme, Academic Press, New York, 1974
  72. Hevehan D.L., Clark E.D.B., Oxidative renaturation of lysozyme at high concentrations, Biotechnology and bioengineering, 1997; 54; 221-230
  73. Huw L., Zhou R., Thirumalai D., Berne B.J., Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding, Proceedings of the national academy of sciences of the United States of America, 2008; 105; 16928-16933
  74. Hunter T., Protein kinases and phosphatases: the Yin and Yang of protein phosphorylation an dsignaling, Cell, 1995; 80; 225-236
  75. Hwang S.M., Kang H.J., Bae S.W., Chang W.J., Koo Y.M., Refolding of lysozyme in hydrophobic interaction chromatography: effects of hydrophobicity of absorbent and salt concentration in mobile phase, Biotechnology and bioprocessing engineering, 2010; 15; 213-219
  76. Ibrahim H.R., Aoki T., Pellegrini A., Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules, Current pharmaceutical design, 2002; 8; 671-693
  77. Ishii Y., Teshima T., Kondo A., Murakami K., Sonezaki S., Ogawa H. I., Kato Y., Fukuda H., Operation conditions of enzyme refolding by chaperonin and recycle system using ultrafiltration, Chemical engineering journal, 1997; 65; 151-157
  78. Jaenicke R., Folding and association of proteins, Progress in biophysics & molecular biology, 1987; 49; 117-237
  79. Jaenicke R., Reassociation and reactivation of lactic-dehydrogenase from unfolded subunits, European journal of biochemistry, 1974; 46; 149-155
  80. Johnson L.N., Phillips D.C., Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6 a resolution, Nature, 1965; 206; 761-763
  81. Juneja J., Udgaonkar J.B., NMR studies of protein folding, Current science, 2003; 84; 157-172
  82. Jungbauer A., Chromatographic media for bioseparation, Journal of chromatography A, 2005; 1065; 3-12
  83. Jungbauer A., Kaar W., Current status of technical protein refolding, Journal of biotechnology, 2007; 128; 587-596
  84. Katoh S., Sezai Y., Yamaguchi T., Katoh Y., Yagi H., Nohara D., Refolding of enzymes in a fed-batch operation, Process biochemistry, 1999; 35; 297-300
  85. Katoh Y., Farshbaf M., Kurooka N. Nohara D., Katoh S., High yield refolding of lysozyme and carbonic anhrdrase at high protein concentrations, Journal of chemical engineering of Japan, 2000; 33; 773-777
  86. Kiefhaber T., Rudolph R., Kohler H.H., Buchner J., Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation, Biotechnology, 1991; 9; 825-829
  87. Kim K.R., Kwon D.Y., Yoon S.H., Kim W.O., Kim K.H., Purification, refolding, and characterization of recombinant Pseudomonas fluorescens lipase, Protein expression and purification, 2005; 39; 124-129
  88. Lai W., Middelberg A., The production of human papillomavirus type 16 L1 vaccine product from Escherichia coli inclusion bodies, Bioprocess and biosystems engineering, 2002; 25; 121-128
  89. Lanckriet H, Middelberg APJ., Continuous chromatographic protein refolding, Journal of chromatography A, 2004; 1022; 103-113
  90. Lee R.C., Despa F., Guo L., Betala P., Kuo A., Thiyagarajan P., Surfactant copolymers prevent aggregation of heat denatured lysozyme, Annals of biomedical engineering, 2006; 34; 1190-1200
  91. Li M., Su Z.G., Janson J.C., In vitro protein refolding by chromatographic procedures, Protein expression and purification, 2004; 33; 1-10
  92. Lilie H., Schwarz E., Rudolph R., Advances in refolding of proteins produced in E-coli, Current opinion in biotechnology, 1998; 9; 497-501
  93. Liu H.S., Chang C.K., Chaperon solvent plug to enhance protein refolding in size exclusion chromatography, Enzyme and microbial technology, 2003; 33; 424-429
  94. London J, Skrzynia C., Goldberg M.E., Renaturation of Escherichia coli tryptophanase after exposure to 8 M urea. Evidence for the existence of nucleation centers, European journal of biochemistry, 1974; 47; 409-415
  95. Lu D., Liu Z., Dynamic redox environment-intensified disulfide bond shuffling for protein refolding in vitro: molecular simulation and experimental validation, Journal of physical chemistry B, 2008; 112; 15127-15133
  96. Lyles M.M., Gilbert H.F., Catalysis of the oxidative folding of ribonuclease-a by protein disulfide Isomerase: dependence of the rate on the composition of the redox buffer, Biochemistry, 1991; 30; 613-619
  97. Maachupalli-Reddy J., Kelley B.D., Clark E.D.B., Effect of inclusion body contaminants on the oxidative renaturation of hen egg white lysozyme, Biotechnology progress, 1997; 13; 144-150
  98. Madar D.J., Patel A.S., Lees W.J., Comparison of the oxidative folding of lysozyme at a high protein concentration using aromatic thiols versus glutathione, Journal of biotechnology, 2009; 142; 214-219
  99. Maeda Y., Koga H., Yamada H., Ueda T., Imoto T., Effective renaturation of reduced lysozyme by gentle removal of urea, Protein engineering, 1995; 8; 201-205
  100. Maeda Y., Yamada H., Ueda T., Imoto T., Effect of additives on the renaturation of reduced lysozyme in the presence of 4 M urea, Protein rngineering, 1996; 9; 461-465
  101. Makrides S.C., Strategies for achieving high-level expression of genes in Escherichia coli, Microbiological reviews, 1996; 60; 512-538
  102. Malchesky P.S., Artificial orangs 2011: a year in review, Artificial organs, 2012; 36; 291-323
  103. Mannall G.J., Titchener-Hooker N.J., Dalby P.A., Factors affecting protein refolding yields in a fed-batch and batch-refolding system, Biotechnology and bioengineering, 2007; 97; 1523-1534
  104. Marchal R., Chaboche D., Douillard R., Jeandet P., Influence of lysozyme treatments on champagne base wine foaming properties, Journal of agricultural and food chemistry, 2002; 50; 1420-1428
  105. Marden M., Griffon N., Poyart C., Oxygen delivery and autoxidation of hemoglobin, Transfusion clinique et biologique, 1995; 2; 473-480
  106. Marston F.A.O., The purification of eukaryotic polypeptides synthesized in Escherichia-coli, Biochemical journal, 1986; 240; 1-12
  107. Masschalck B., Michiels C.W., Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria, Critical reviews in microbiology, 2003; 29; 191-214
  108. Matsubara M., Nohara D., Kurimoto E., Kuroda Y., Sakai T., Loose folding and delayed oxidation procedures successfully applied for refolding of fully reduced hen egg-white lysozyme, Chemical & pharmaceutical bulletin, 1993; 41; 1207-1210
  109. Matsubara M., Nohara D., Sakai T., Difference between guanidinium chloride and urea as denaturants of globular-proteins: the possibility of application to improved refolding processes, Chemical & pharmaceutical bulletin, 1992; 40; 550-552
  110. Mckee T., Biochemistry, Oxford university press, New York, 2009
  111. Meyer A.J., Hell R. Glutathione homeostasis and redox-regulation by sulfhydryl groups, Photosynthesis research, 2005; 86; 435-457
  112. Moraitakis G., Goodfellow J.M., Simulations of human lysozyme: probing the conformations triggering amyloidosis, Biophysical journal, 2003; 84; 2149-2158
  113. Neurath H., Greenstein J.P., Putnam F.W., Erickson J.O., The chemistry of protein denaturation, Chemical reviews, 1944; 34; 157-265
  114. Orsini G., Skrzynia C., Goldberg M.E., Renaturation of reduced polyalanyl-chymotrypsinogen and chymotrypsinogen, European journal of biochemistry, 1975; 59; 433-440
  115. Park B.J., Koo Y.M., Lee C.H., Development of novel protein refolding using simulated moving bed chromatography, Korean journal of chemical engineering, 2005; 22; 425-432
  116. Park B.J., Lee C.H., Mun S., Koo Y.M., Novel application of simulated moving bed chromatography to protein refolding, Process biochemistry, 2006; 41; 1072-1082
  117. Phillips D.C., Hen egg-white lysozyme molecule, Proceedings of the national academy of sciences of the United States of America, 1967; 57; 484-495
  118. Proctor V.A., Cunningham F.E., The chemistry of lysozyme and its use as a food preservative and a pharmaceutical, Critical reviews in food science and nutrition, 1988; 26; 359-395
  119. Radford S.E., Dobson C.M., Evans P.A., The folding of hen lysozyme involves partially structured intermediates and multiple pathways, Nature, 1992; 358; 302-307
  120. Rajan R.S., Li T., Aras M., Sloey C., Sutherland W., Arai H., Briddell R., Kinstler O., Lueras A.M.K., Zhang Y., Yeghnazar H., Treuheit M., Brems D.N., Modulation of protein aggregation by polyethylene glycol conjugation: GCSF as a case study, Protien science, 2006; 15; 1063-1075
  121. Raman B., Ramakrishna T., Rao C.M., Refolding of denatured and denatured/reduced lysozyme at high concentrations, Journal of biological chemistry, 1996; 271; 17067-17072
  122. Reddy R.C., Lilie H., Rudolph R., Lange C., L-arginine increases the solubility of unfolded species of hen egg white lysozyme, Protein Science, 2005; 14; 929-935
  123. Roger H.P., Mechanisms of protein folding, Oxford university press, New York, 2000
  124. Rudolph R., Lilie H., In vitro folding of inclusion body proteins, The FASEB journal, 1996; 10; 49-56
  125. Rothwarf D.M., Scheraga H.A., Equilibrium and kinetic constants for the thiol disulfide interchange reaction between glutathione and dithiothreitol, Biochemistry, 1992; 89; 7944-7948
  126. Rupley J.A., Binding and cleavage by lysozyme of N-acetylglucosamine oligosaccharides, Proceedings of the royal society of London series B-biological sciences, 1967; 167; 416-428
  127. Sadana A., Protein refolding and inactivation during bioseparation-bioprocessing implications, Biotechnology and bioengineering, 1995; 48; 481-489
  128. Salazar O., Asenjo J.A., Enzymatic lysis of microbial cells. Biotechnology letters, 2007; 29; 985-994
  129. Salton M.R.J., Cell wall of micrococcus-lysodeikticus as the substrate of lysozyme, Nature, 1952; 170; 746-747
  130. Saxena V.P., Wetlaufe D. B., Formation of 3-dimensional structure in proteins. 1. Rapid nonenzymic reactivation of reduced lysozyme, Biochemistry, 1970; 9; 5015-5022
  131. Schlegl R., Iberer G., Machold C., Necina R., Jungbauer A., Continuous matrix-assisted refolding of proteins, Journal of chromatography A, 2003; 1009; 119-132
  132. Schlegl R., Necina R., Jungbauer A., Continuous matrix-assisted refolding of inclusion–body proteins: effect of recycling, Chemical engineering and technology, 2005; 28; 1375-1386
  133. Schneider N., Werkmeister K., Becker C.M., Pischetsrieder M, Prevalence and stability of lysozyme in cheese, Food chemistry, 2011; 128; 145-151
  134. Sharon N., Chemical structure of lysozyme substrates and their cleavage by enzyme, Proceedings of the royal society of London series B-biological sciences, 1967; 167; 402-415
  135. Sharapova O.A., Yurkova M.S., Laurinavichyute D.K., Andronova S.M., Fedorov A.N., Severin S.E., Severin E.S., Efficient refolding of a hydrophobic protein with multiple S-S bonds by on-resin immobilized metal affinity chromatography, Journal of chromatography A, 2011; 1218; 5115-5119
  136. Smeenk J.M., PSchon., Otten M.B.J., Speller S., Stunnenberg H.G., van Hest J.C.M., Fibril formation by triblock copolymers of silklike beta-sheet polypeptides and poly(ethylene glycol), Macromolecules, 2006; 39; 2987-2997
  137. St John R.J., Carpenter J.F., Randolph T.W., High-pressure refolding of disulfide-cross-linked lysozyme aggregates: thermodynamics and optimization, Biotechnology progress, 2002; 18; 565-571
  138. Sun M.M., Dai X.X., Zheng Y.P., Wang J.W., Hou L.L., Du J.A., Hu H.G., On-column refolding purification of DT389-hIL13 recombinant protein expressed in Escherichia coli, Protein expression and purification, 2011; 75; 83-88
  139. Szajewski R. P., Whitesides G. M., Rate constants and equilibrium-constants for thiol-disulfide interchange reactions involving oxidized glutathione, Journal of the American chemical society, 1980; 102; 2011-2026
  140. Teipel, J.W., Koshland D.E., Kinetic aspects of conformational changes in proteins. 1. Rate of regain of enzyme activity from denatured proteins, Biochemistry, 1971a; 10; 792-797
  141. Teipel, J.W., Koshland D.E., Kinetic aspects of conformational changes in proteins. 2. Structural changes in renaturation of denatured proteins, Biochemistry 1971b; 10; 798-805
  142. Tran-Moseman A., Schauer N., Clark E.D., Renaturation of Escherichia coli-derived recombinant human macrophage colony-stimulating factor, Protein expression and purification, 1999; 16; 181-189
  143. Treuheit M.J., Kosky A.A., Brems D.N., Inverse relationship of protein concentration and aggregation, Pharmaceutical research, 2002; 19; 511-516
  144. Udgaonkar J.B, Multiple routes and structural heterogeneity in protein folding, Annual review of biophysics, 2008; 37; 489-510
  145. Umetsu M., Tsumoto K., Hara M., Ashish K., Goda S., Adschiri T., Kumagai I., How additives influence the refolding of immunoglobulin-folded protein in a stepwise dialysis system, The journal of biological chemistry, 2003; 278; 8979-8987
  146. Umetsu M., Tsumoto K., Hara M., Ashish K., Goda S., Adschiri T., Kumagai I., How additives influence the refolding of immunoglobulin-folded proteins in a stepwise dialysis system: Spectroscopic evidence for highly efficient refolding of a single-chain FV fragment, Journal of biological chemistry, 2003; 278; 8979-8987
  147. van den Berg B., Chung E.W., Robinson C.V., Dobson C.M., Characterization of the dominant oxidative folding intermediate of hen lysozyme, Journal of molecular biology, 1999; 290; 781-796
  148. Vandenbroeck K., Martens E., Dandrea S., Billiau A., Refolding and single-step purification of porcine interferon-gamma from Escherichia-coli inclusion bodies: conditions for reconstitution of dimeric Ifn-gamma. European journal of biochemistry, 1993; 215; 481-486
  149. Vandermeulen G.W.M., Tziatzios C., Klok H.A., Reversible self-organization of poly(ethylene glycol)-based hybrid block copolymers mediated by a De Novo four-stranded alpha-helical coiled coil motif, Macromolecules, 2003; 36; 4107-4114
  150. Vergara A., Paduano L., Sartorio R., Mechanism of protein-poly(ethyleneglycol) interaction from a diffusive point of view, Macromolecules, 2002; 35; 1389-1398
  151. Wang C., Cheng Y., Urea-gradient protein refolding in size exclusion chromatography, Current pharmaceutical biotechnology, 2010; 11; 289-292
  152. Wang C., Wang L., Geng X., High recovery refolding of rhG-CSF from Escherichia coli, using urea gradient size exclusion chromatography, Biotechnology progress, 2008; 24; 209-213
  153. Wang C., Wang L., Geng X., Renaturaion of recombinant human granulocyte colony-stimulating factor produced from Escherichia coli using size exclusion chromatography, Journal of liquid chromatography and related technologies, 2006a; 29; 203-216
  154. Wang S.S.-S., Chang C.K., Liu H.S., Effect of sample loop dimension on lysozyme refolding in size-exclusion chromatography, Journal of chromatography A, 2007; 1161; 56-63
  155. Wang S.S.-S., Chang C.K., Liu H.S., Step change of mobile phase flow rates to enhance protein folding in size exclusion chromatography, Biochemical engineering journal, 2006b; 29; 2-11
  156. Wang S.S.-S., Chang C.K., Peng M.J., Liu H.S., Effect of glutathione redox system on lysozyme refolding in size exclusion chromatography, Food bioproducts processing, 2006c; 84; 18-27
  157. Wright E., Serpersu E.H., Isolation of aminoglycoside nucleotidyltransferase (2')-Ia from inclusion bodies as active, monomeric enzyme, Protein expression and purification, 2004; 35; 373-380
  158. Xue Q.G., Schey K.L., Volety A.K., Chu F.L.E., La Peyre J.F., Purification and characterization of lysozyme from plasma of the eastern oyster (cassostrea virginica), Comparative bochemistry and pysiology b-biochemistry & molecular biology, 2004; 139; 11-25
  159. Yamamoto E., Yamaguchi S., Nagamune T., Synergistic effects of detergents and organic solvent on protein refolding: control of aggregation and folding rates, Journal of bioscience and bioengineering, 2011; 111; 10-15
  160. Yasuda M., Murakami Y., Sowa A., Ogino H., Ishikawa H., Effect of additives on refolding of a denatured protein, Biotechnology progess, 1998; 14; 601-606
  161. Yutani K., Yutani A., Imanishi A., Isemura T., Mechanism of refording of reduced random coil form of lysozyme, Journal of biochemistry, 1968; 64; 449-455
  162. Zettlmeissl G., Rudolph R., Jaenicake R., Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation, Biochemistry, 1979; 18; 5567-5571
  163. Zettlmeissl G., Rudolph R., Jaenicake R., Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 2. Reactivation of irreversibly denatured aggregates, Biochemistry, 1979; 18; 5572-5575
  164. 廖彗媚,復性緩衝液中氧化還原反應對溶菌酶復性之研究,台灣大學碩士論文,2003
  165. 張哲魁,以大小排阻層析法進行蛋白質復性之研究,台灣大學博士論文,2005
  166. 張棨翔,二硫代蘇糖醇對溶菌酶變性及復性程序之影響,台灣大學碩士論文,2007a
  167. 張亦廷,大小排阻層析法操作程序對蛋白質復性之影響,台灣大學碩士論文,2007b
  168. 周若莟,變性劑中各成份在透析操作中移除方式的設計對溶菌酶復性效果之影響,台灣大學碩士論文,2008
  169. 林右晨,殘留之二硫代蘇糖醇與尿素對溶菌酶復性之影響,台灣大學碩士論文,2009
  170. 林煒泰,溶菌酶復性程序中氧化還原對之研究,台灣大學碩士論文,2010
  171. 冼祐安,低倍率之溶菌酶復性,台灣大學碩士論文,2011