Title

奈米金粒對電漿子紅外線熱發射器的增強效應與葡萄糖分子感測的應用之研究

Translated Titles

The Studies of Improved Performance of Plasmonic Thermal Emitter with Gold Nanoparticles and Glucose Molecule Sensing Using Thermal Emitter as IR Source

DOI

10.6342/NTU.2013.00528

Authors

鄭哲軒

Key Words

奈米金粒 ; 電漿子熱發射器 ; 血糖偵測 ; Gold Nanoparticles ; Plasmonic Thermal Emitter ; Glucose Molecule Sensing

PublicationName

臺灣大學電子工程學研究所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

李嗣涔

Content Language

英文

Chinese Abstract

本論文主要研究與探討奈米金粒對於電漿子熱輻射發射器的放射增強效應並進一步應用此紅外線發射器於葡萄糖分子的感測。首先,本實驗在熱發射器表面蒸鍍上金的薄膜,並進行快速熱退火使金膜裂解成顆粒狀。藉由改變金膜的厚度與熱退火的溫度,觀察不同條件下所形成的金粒之大小與分布,並探討不同形貌的金粒對於熱發射器在中紅外波段放射強度的增強效應。實驗顯示,奈米尺度的金粒可以顯著地增強發射器的輻射強度。接著,利用此熱發射器當作紅外光源,設計葡萄糖溶液的感測系統,並實際進行量測。論文中針對葡萄糖分子在波長十微米附近的主要吸收區域,呈現如何設計出對應到其吸收峰值的單波長與雙波長電漿子熱發射器。放置溶液的容器之考量與製作也在文章中詳細討論,包含穿透窗口玻片材料的選擇與溶液厚度的控制。最後,利用此感測系統實際去量測不同濃度的葡萄糖溶液,藉由觀察特定波長紅外光穿透溶液後強度減弱的情形,可發現葡萄糖濃度與紅外光吸收量之間存在著線性的關係。本實驗的結果有助於未來非侵入式血糖檢測儀的研究與發展。

English Abstract

The enhanced emission of plasmonic thermal emitter via incorporation of gold nanoparticles is investigated experimentally. First, thin gold film was deposited on top of the thermal emitter and then annealed to form separate particles. The thickness of the gold film and the annealing temperature were varied to observe the different morphologies of the resulting gold particles. From the experimental results, nanometer-sized gold particles are able to improve the emission intensity of the emitter at mid-infrared region. Next, these thermal emitters were applied as infrared source in glucose molecule sensing. We paid attention to the major absorption wavelength range of glucose around 10 micrometers, showing how to design the corresponding single and double peaks plasmonic thermal emitter. The consideration and fabrication of glucose solution container was also discussed in detail, including the materials of the infrared transmission window and the control of solution thickness. Finally, this sensing system was utilized to measure the solutions with different glucose concentrations. The radiation intensity attenuated after transmitting through the solution. By observing the intensity change of the infrared emission, a linear relationship between glucose concentration and the amount of infrared being absorbed can be obtained. This sensing system paves a new way in noninvasive glucose monitoring.

Topic Category 電機資訊學院 > 電子工程學研究所
工程學 > 電機工程
Reference
  1. [2] U. Schroter and D. Heitmann, Phys. Rev. B 58, 15419 (1998).
    連結:
  2. [3] L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, Phys. Rev. Lett. 86, 1110
    連結:
  3. Rev. B 58, 6779 (1998).
    連結:
  4. [6] J. Cheng and X.S. Xie, J. Phys. Chem. B 108, 827 (2004).
    連結:
  5. [7] Y. T. Chang, Y. T. Wu, J. H. Lee, H. H. Chen, C. Y. Hsieh, H. F. Huang, Y.
    連結:
  6. W. Jiang, P. E. Chang and S. C. Lee, Appl. Phys. Lett. 95, 213102 (2009).
    連結:
  7. [8] Chia-Yi Chen, Ming-Wei Tsai, Tzu-Hung Chuang, Yi-Tsung Chang, and
    連結:
  8. Si-Chen Lee, Appl. Phys. Lett. 91, 063108 (2007).
    連結:
  9. [10] Fischer, H. & Martin, Opt. Express 16, 9144–9154 (2008).
    連結:
  10. 827–832 (2006).
    連結:
  11. [14] Dobson, C. M. Nature, 426, 884–890 (2003).
    連結:
  12. Mater.doi:10.1038/nmat2461 (2009).
    連結:
  13. [19] P. Jiang, Z. Guo, Coord. Chem. Rev., 248, 205 – 229 (2004).
    連結:
  14. [21] Ming-Wei Tsai, Tzu-Hung Chuang, Hsu.-Yu Chang, and Si-Chen Lee, Appl.
    連結:
  15. Phys. Lett. 89, 093102 (2006).
    連結:
  16. [22] Y. T. Chang, Y. C. Lai, C. T. Li, C. K. Chen, and T. J. Yen, Opt. Exp. 18,
    連結:
  17. 9561 (2010).
    連結:
  18. [23] Y. W. Jiang, L. D. Tzuang, Y. H. Ye, Y. T.Wu, M. W. Tsai, C. Y. Chen, and
    連結:
  19. S. C. Lee, Opt. Exp. 17, 2631 (2009).
    連結:
  20. [24] J. T. Kim, J. J.Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, Opt.
    連結:
  21. Express 16(17), 13133–13138 (2008).
    連結:
  22. [27] Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 34, 40-48 (2001).
    連結:
  23. [29] Y. T. Wu, Y. W. Jiang, L. D. C. Tzuang , P. E. Chang, Y. T. Chang, S.
    連結:
  24. R. Tsai, H. H. Chen, H. F. Huang, Y. H. Ye, and S. C. Lee, Photonics Tech. Lett.
    連結:
  25. Vol. 22, p. 1159 (2010).
    連結:
  26. 23–32 (1999).
    連結:
  27. 4327−4329 (2002).
    連結:
  28. T. W. Ebbesen, J. Opt. Soc. Amer. B, vol. 29, no. 1, pp. 130–137 (2012).
    連結:
  29. [33] Z. Ruan and M. Qiu, Phys .Rev. Lett. 96, 233901 (2006).
    連結:
  30. [34] D. Crouse and P. Keshavareddy, Opt. Express 15, 1415 (2007).
    連結:
  31. Turunen’ d Martti Kauranen, J. Opt. A: Pure Appl. Opt. 7 (2005)
    連結:
  32. [37] Hong Wei, Daniel Ratchford, Xiaoqin (Elaine) Li, Hongxing Xu, and Chih-Kang
    連結:
  33. Shih, Nano Lett. Vol.9 No. 12 (2009).
    連結:
  34. Appl. Phys. 108, 093520 (2010).
    連結:
  35. [39] Matthew J. Kofke, David H. Waldeck, and Gilbert C. Walker, Opt. Express,
    連結:
  36. Vol.18, No. 8 (2010).
    連結:
  37. [42] National Institute of Diabetes and Digestive and Kidney Disorders, NIH
    連結:
  38. Publication, (1993).
    連結:
  39. Biomed. Opt 13(1), 014021-1-014021-6 (2008).
    連結:
  40. Bibliography
  41. [1] H. Liu and P. Lalanne, Nature 452, 728 (2008).
  42. (2001).
  43. [4] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature
  44. (London) 391, 667 (1998).
  45. [5] H. F. Ghaemi, Tineke Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, Phys.
  46. [9] H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y.C. Pati, SPIE 3334, 1998, pp. 2–14.
  47. [11] Sun, Y., Mayers, B. & Xia, Y., Adv. Mater. 15, 641–646 (2003).
  48. [12] Wang, H., Brandl, D. W., Le, F., Nordlander, P. & Halas, N. J. Nano Lett. 6,
  49. [13] Cohen, F. E.; Kelly, J. W. Nature, 426, 905–909 (2003).
  50. [15] Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X., Nature
  51. [16] Ghaemi, H. F., Thio, T., Grupp, D. E., Ebbesen, T. W. & Lezec, H. J. Phys.
  52. Rev. B 58, 6779−6782 (1998).
  53. [17] Ishimaru, A., J. D. Rockway, Y. Kuga, and S.-W. Lee, IEEE Trans.
  54. Antennas Propag., 48, 1475–1484, (2000).
  55. [18] G. Stewart, W. Jin, and B. Culshaw, Sens. Actuators B 38–39, 42–47 (1997).
  56. [20] F. R. Gfeller, H. R Miiller, and P. Vettiger, IEEE COMPCON’78 (1979).
  57. [25] Zia, R., Schuller, J.A. & Brongersma, M. L. Phys. Rev. B 74, 165415 (2006).
  58. [26] M. C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004)
  59. [28] Liu SQ and Ju HX, Anal Biochem 307:110–116 (2002).
  60. [30] G.P. Rigby, S. Ahmed, G. Horseman, P. VadgamaAnal., Chim. Acta, 385, pp.
  61. [31] Degiron, A., Lezec, H. J., Barnes, W. L. & Ebbesen, T. W. Appl. Phys. Lett. 81,
  62. [32] T. Sondergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and
  63. [35] Brian K Canfield, Sami Kujala, Konstantins Jefimovs, Tuomas Vallius, Jari
  64. [36] Y. H. Ye, et al., Appl. Phys. Lett., vol. 93, no. 3, pp. 033113-1–033113-3, 2008.
  65. [38] Meng-Dong He, Zhi-Qiang Gong, Shui Li, Yong-Feng Luo, Jian-Qiang Liu, J.
  66. [40] Zhaoguang Pang, Xinping Zhang, and Tianrui Zhai, J. Appl. Phys., 110, 074313
  67. (2011).
  68. [41] P. E. Chang, et al., Appl. Phys. Lett., vol. 98, no. 7, pp. 073111-1–073111-3,
  69. (2011).
  70. [43] Roger J. M. and Gerard L. Cote, Journal of Biomedical Optics 5(1), 5–16 (2000).
  71. [44] Meinke, M., Muller, G., Albrecht, H., Christina, A., Heike, R. and Juergen, L., J.
  72. [45] M. R. Querry, D. M. Wieliczka, D. J. Segelstein, Handbook of Optical Constants
  73. of Solids II, 1059-1077 (1991).
  74. [46] S. Collin, F. Pardo, and J.-L. Pelouard, Opt. Express 15, 4310 (2007).
  75. [47] Fuwa, K., and Vallee, B. L., Anal. Chem. 35, 942 (1963).
  76. [48] V. V. Tuchin, ed., Handbook of Optical Sensing of Glucose in Biological Fluids
  77. and Tissues, CRC Press, Boca Raton, FL, (2008).