Title

中尺度雙極渦旋運動之數值模式探討

Translated Titles

Numerical Model Study of the Mesoscale Dipolar Eddy

DOI

10.6342/NTU.2015.00403

Authors

鄭宥騰

Key Words

減重力 ; 渦旋解析模式 ; 雙極渦旋 ; Reduced-gravity ; Eddy-resolving model ; Dipolar eddy

PublicationName

臺灣大學海洋研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

陳慶生

Content Language

繁體中文

Chinese Abstract

中尺度海洋渦旋是大洋上常見的海洋現象,而此類海洋渦旋能夠夾帶水團與大量能量的傳遞。近年來研究發現大洋中同時出現由兩個旋轉方向相反的渦旋組成的中尺度雙極渦旋。本研究目的主要是探討雙極渦旋在f平面上的特性與其動力特徵。使用方法為減重力原始方程的渦旋解析模式探討中尺度雙極渦旋運動行為與動力過程。模擬六個實驗(A-F),結果如下: 在相同半徑及相同強度下,設定高壓渦旋在北,低壓渦旋在南,兩個渦旋中心相距720公里(實驗A,control case),此距離兩渦旋皆是靜止不動。當兩個渦旋中心距640公里(實驗B)時,發現兩渦旋開始緩緩移動,移動軌跡為向西平移;當兩個渦旋中心距離減少至560公里(實驗 C),發現兩渦旋不只有向西平移現象,在南北向還會互相接近。兩渦旋移動的原因是北方的高壓受到南方低壓的速度平流推著走,反之亦然,也就是雙極本身就有自行移動的機制。兩渦旋在實驗C中會靠近的原因則是由 vortex force所引起,使高壓產生一向南的加速度,低壓產生一向北的加速度;此加速度使中間交互作用區向西的動量通量產生輻合作用,造成其向西的流速變快。實驗E和實驗F是在相同半徑,不同強度的情況,結果顯示強度較弱的渦旋會移動的比強度強的快,且移動軌跡並非為直線平移而是繞著他們共同的質心在轉。 位於兩渦旋中央交互作用區的地方其能量都是增加,而在交互作用區外的能量則是減少,這之間的轉換是因為vortex force 產生的南北向加速度影響,使交互作用區的能量增加而產生輻合,交互作用區外則會因能量減少造成輻散。

English Abstract

Mesoscale eddies are common features of the open ocean and they can provide an efficient mechanism for the water masses and transport of energy. Recent studies found mesoscale dipolar eddy that consists of two counter-rotating eddies in the ocean. This study aims to investigate characteristics and dynamics of mesoscale dipolar eddy in f-plane. A reduced-gravity primitive equation eddy-resolving model was used to study them. Five sets of experiments (A-F) are simulated. The results are described as follow. We add a pair of anticyclonic eddy and cyclonic eddies with same radius and intensity to the model. The anticyclonic eddy sits on the north, whereas the cyclonic eddy locates 720 km apart on the south (experiment A, control case). These two eddies are both still on experiment A. When the distance between these two eddies is 640 km (experiment B), the eddies begin to slowly propagate westward and the trajectory is translation. If the distance between eddies decreases to 560 km (experiment C), they not only propagate westward but also become closer meridionally. The eddies have tendency to move because the northern anticyclonic eddy is advected by velocity of the southern cyclonic eddy, and vice versa. In other words, the dipole has mechanism of self-propelling in itself. The vortex force makes the anticyclonic eddy generate southward acceleration and makes the cyclonic eddy generate northward acceleration, so the eddies meridionally approach to each other while propagating zonally. This acceleration results in a convergence of the westward momentum flux and a strengthening of the westward velocity between the two eddies. Experiments E and F are tested using same radius but different intensity. The results show that the weaker eddy would move faster than the stronger. The dipole would move around their common center of mass instead of along a straight trajectory zonally.   The energy increases between the two eddies (the interaction zone), but decreases elsewhere. The conversion between them is due to the effect of the vortex force, which generates the northward and southward acceleration. The energy then increases (decreases) and results in convergence (divergence) in (outside) the interaction zone.

Topic Category 基礎與應用科學 > 海洋科學
理學院 > 海洋研究所
Reference
  1. Ahlnäs, K., Royer, T. C., and George, T. H. (1987). Multiple dipole eddies in the Alaska Coastal Current detected with Landsat thematic mapper data. Journal of Geophysical Research, 92(C12), 13041-13047. doi: 10.1029/JC092iC12p13041
    連結:
  2. Backus, R. H. (1981). Gulf Stream cold-core rings: their physics, chemistry, and biology. Science, 212, 1091-1100. doi: 10.1126/science.212.4499.1091
    連結:
  3. Capéran, P., and Verron, J. (1988). Numerical simulation of a physical experiment on two-dimensional vortex merging. Fluid Dynamics Research, 3, 87-92.
    連結:
  4. Carnevale, G. F., Vallis, G. K., Purini, R., and Briscolini, M. (1988). Propagation of barotropic modons over topography. Geophysical and Astrophysical Fluid Dynamics, 41, 45-101.
    連結:
  5. Chassignet, E. P., and Cushman-Roisin, B. (1991). On the influence of a lower layer on the propagation of nonlinear oceanic eddies. Journal of Physical Oceanography, 21(7), 939-957.
    連結:
  6. Chelton, D. B., Schlax, M. G., Samelson, R. M., and Szoeke, R. A. de. (2007). Global observations of large oceanic eddies. Geophysical Research Letters, 34( L5606), 1-5.
    連結:
  7. Chern, C.-S., and Wang, J. (2005). Interactions of mesoscale eddy and western boundary current: A reduced-gravity numerical model study. Journal of Oceanography, 61(2), 271-282.
    連結:
  8. Cushman-Roisin, B. (1986). Frontal geostrophic dynamics. Journal of Physical Oceanography, 16(1), 132-143.
    連結:
  9. Cushman-Roisin, B., Tang, B., and Chassignet, E. P. (1990). Westward motion of mesoscale eddies. Journal of Physical Oceanography, 20(5), 758-768.
    連結:
  10. de Ruijter, W. P. M., Aken, H. M. v., Beier, E. J., Lutjeharms, J. R. E., Matano, R. P., and Schouten, M. W. (2004). Eddies and dipoles around South Madagascar: formation, pathways and large-scale impact. Deep Sea Research Part I: Oceanographic Research Papers, 51(3), 383-400. doi: 10.1016/j.dsr.2003.10.011
    連結:
  11. Fedorov, K.N. and Ginsburg, A.I (1989). Mushroom-like currents (vortex dipoles): one of the most widespread forms of non-stationary coherent motions in the ocean. Mesoscale/Synoptic Coherent structures in Geophysical Turbulence, Elsevier Oceanography Series, 50, 1-14.
    連結:
  12. Fedorov, K.N., Ginsburg, A.I and Kostianoy, A.G. (1989). Modelling of 'mushroom-like' currents (vortex dipoles) in a laboratory tank with rotating homogenous and stratified fluids. Mesoscale/Synoptic Coherent structures in Geophysical Turbulence, Elsevier Oceanography Series, 50, 15-24.
    連結:
  13. Flierl, G. R. (1977). The application of linear quasigeostrophic dynamics to Gulf Stream rings. Journal of Physical Oceanography, 7(3), 365–379.
    連結:
  14. Flierl, G. R. (1987). Isolated eddy models in geophysics. Annual Reviews of Fluid Mechanics, 19, 493-530.
    連結:
  15. Flierl, G. R., Stern, M. E., and Jr., J. A. W. (1983). The physical significance of modons: Laboratory experiments and general integral constraint. Dynamics of Atmospheres and Oceans, 7(4), 233-263.
    連結:
  16. Gent, P. R., and McWilliams, J. C. (1986). The instability of barotropic circular vortices. Geophysical and Astrophysical Fluid Dynamics, 35(1-4), 209-233. doi: 10.1080/03091928608245893
    連結:
  17. Gutknecht, E., Dadou, I., Charria, G., Cipollini, P., and Garçon, V. (2010). Spatial and temporal variability of the remotely sensed chlorophyll a signal associated with Rossby waves in the South Atlantic Ocean. Journal of Geophysical Research, 115(C05004). doi: 10.1029/2009jc005291
    連結:
  18. Hogg, N. G., and Stommel, H. M. (1985). The heton, an elementary interaction between discrete baroclinic geostrophic vortices, and its implications concerning eddy heat-flow. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 391(1812), 1-20.
    連結:
  19. Ivanov, A. Y., and Ginzburg, A. I. (2002). Oceanic eddies in synthetic aperture radar images. Journal of Earth System Science, 111(3), 281-295.
    連結:
  20. Jacob, J. P., Chassignet, E. P. and Dewar, W. K. (2002). Influence of topography on the propagation of isolated eddies. Journal of Physical Oceanography, 32(10), 2848-2869.
    連結:
  21. Johannessen, J. A., Sandven, S., Lygre, K., Svendsen, E., and Johannessen, O. M. (1989). Three-dimensional structure of mesoscale eddies in the Norwegian Coastal Current. Journal of Physical Oceanography, 19(1), 3-19.
    連結:
  22. Kono, M., and Horton, W. (1991). Point vortex description of drift wave vortices: Dynamics and transport. Physics of Fluids B:Plasma Physics, 3(12), 1-26.
    連結:
  23. Kuo, Y.-C., and Chern, C.-S. (2011). Numerical study on the interactions between a mesoscale eddy and a western boundary current. Journal of Oceanography, 67(3), 263-272. doi: 10.1007/s10872-011-0026-3
    連結:
  24. Manucharyan, G. E., and Timmermans, M.-L. (2013). Generation and separation of mesoscale eddies from surface ocean fronts. Journal of Physical Oceanography, 43(12), 2545-2562. doi: 10.1175/JPO-D-13-094.1
    連結:
  25. McGillicuddy, D.J. (2011). Eddies masquerade as planetary waves. Science, 334 (6054), 318-319.
    連結:
  26. McWilliams, J. C., and Flierl, G. R. (1979). On the evolution of isolated, nonlinear vortices. Journal of Physical Oceanography, 9(6), 1155-1182.
    連結:
  27. McWilliams, J. C., Gent, P. R., and Norton, N. J. (1986). The evolution of balanced, low-mode vortices on the β-plane. Journal of Physical Oceanography, 16(5), 838-855.
    連結:
  28. Mied, R. P., and Lindemann, G. J. (1979). The propagation and evolution of cyclonic Gulf Stream rings. Journal of Physical Oceanography, 9, 1183–1206.
    連結:
  29. Nguyen Duc, J.-M., and Sommeria, J. (1988). Experimental characterization of steady two-dimensional vortex couples. Journal of Fluid Mechanics, 192, 175-192.
    連結:
  30. Pavia, E. G., and Cushman-Roisin, B. (1990). Merging of frontal eddies. Journal of Physical Oceanography, 20(12), 1886-1906.
    連結:
  31. Pedlosky, J. (1987). Geophysical fluid dynamics. Springer-Verlag, New York, 2nd edition, 1-710.
    連結:
  32. Phillips, O. M. (1977). The dynamics of the upper ocean. Cambridge University Press, Cambridge U.K., 1-336.
    連結:
  33. Qiu, B. (1999). Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. Journal of Physical Oceanography, 29(10), 2471-2486.
    連結:
  34. Qiu, B., and Chen, S. (2010). Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. Journal of Physical Oceanography, 40, 213-225. doi: 10.1175/2009jpo4285.1
    連結:
  35. Roemmich, D., and Gilson, J. (2001). Eddy transport of heat and thermocline waters in the North Pacific: A key to interannual/decadal climate variability? Journal of Physical Oceanography, 31(3), 675-687.
    連結:
  36. Sasaki, Y. N., Minobe, S., and Schneider, N. (2013). Decadal response of the Kuroshio Extension jet to Rossby waves: Observation and thin-jet theory. Journal of Physical Oceanography, 43(2), 442-456. doi: 10.1175/jpo-d-12-096.1
    連結:
  37. Saucier, W. J. (1953). Horizontal deformation in atmospheric motion. American Geophysical Union, 34(5), 709-719.
    連結:
  38. Simpson, J. J., and Lynn, R. J. (1990). A mesoscale eddy dipole in the offshore California Current. Journal of Geophysical Research, 95(C8), 13009-13022. doi: 10.1029/JC095iC08p13009
    連結:
  39. van Heijst, G. J. F., and Flór, J. B. (1989). Dipole formation and collisions in a stratified fluid. Nature, 340, 212-215.
    連結:
  40. Vastano, A. C. and Bernstein, R. L. (1984). Mesoscale features along the first Oyashu intrusion. Journal of Geophysical Research, 89, 2175-2182.
    連結:
  41. Williams, G. P., and Yamagata, T. (1984). Geostrophic regimes, intermediate solitary vortices and Jovian eddies. Journal of the Atmospheric Sciences, 41(4), 453-478.
    連結:
  42. Yasuda, I., Okuda, K., and Hirai, M. (1992). Evolution of a Kuroshio warm-core ring—variability of the hydrographic structure. Deep Sea Research, 39, 131-161.
    連結:
  43. Zabusky, N. J., and McWilliams, J. C. (1982). A modulated point‐vortex model for geostrophic, β‐plane dynamics. Physics of Fluids, 25(12), 2175-2182.
    連結:
  44. 高瑞其 (2001). 黑潮上游海區衛星測高觀測:渦漩之決定及分析。國立交通大學土木工程學系碩士論文,1-93。
    連結:
  45. 郭怡君 (2013). 台灣附近海域對西行颱風通過反應之數值模擬研究。國立台灣大學理學院海洋研究所博士論文,1-108。
    連結:
  46. Cushman-Roisin, B. (1994). Introduction to geophysical fluid dynamics. Prentice Hall, Englewood Cliffs, N.J., 1-320.
  47. Ebuchi, N., and Hanawa, K. (2000). Mesoscale eddies observed by TOLEX-ADCP and TOPEX/POSEIDON altimeter in the Kuroshio recirculation region south of Japan. Journal of Oceanography, 56(1), 43-57.
  48. Gill, A. E. (1982). Atmosphere-ocean dynamics. Academic Press, New York, 1-662.
  49. Ginsburg, A.I., Kostianoy, A.G., Pavlov, A.M. and Fedorov, K.N. (1987). Laboratory reproduction of "mushroom-like' currents (vortex dipoles) under rotation and stratification conditions. Izvestiya, Academy of Sciences, USSR, Atmospheric and Oceanic Physics, 23, 170-178.
  50. Joyce, T., Backus, R., Baker, K., Blackwelder, P. L., Brown, O., Cowles, T. J., Evans, R. H., Fryxell, G., Mountain, D., Olson, D., Schlitz R., Schmitt, R., Smith, P., Smith, R., and Wiebe, P. (1984). Rapid evolution of a Gulf Stream warm-core ring. Nature, 308, 837-840.
  51. Kawano, J., and Yamagata, T. (1977). The behaviour of a vortex pair on the beta plane. Journal of the Oceanographic Society of Japan, 36, 83-84.
  52. Pickard, G. L., and Emery, W. J. (1990). Descriptive physical oceanography : an introduction. Pergamon Press, Oxford U.K., 5th enlarged edition, 1-320.
  53. Yang, Y., Liu, C.-T., Hu, J.-H., and Koga, M. (1999). Taiwan Current (Kuroshio) and impinging eddies. Journal of Oceanography, 55, 609-617.