Title

1. 旋環雙芴分子在光伏元件和有機電致發光元件之應用 2. Benzothiadiazole 衍生物在電化學發光(ECL)和由掃描式電 化學顯微鏡(SECM)促進Click Chemistry 鍵結螢光分子之 創新式奈米圖形法研究

Translated Titles

1. The Applications of Spirobifluorene-configured Bipolar Materials in Photovoltaics and Electrophosphorescence Devices 2. The Applications of Benzothiadiazole Derivatives in Electrogenerated ChemiLuminescence (ECL) and Surface Patterning Directed by Scanning Electrochemical Microscopy (SECM) Promoted Click Chemistry

DOI

10.6342/NTU.2008.00317

Authors

古嵩煜

Key Words

光伏元件 ; 有機電致發光 ; 電化學發光 ; Photovoltaics ; Electrophosphorescence ; ECL ; SECM

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

博士

Advisor

汪根欉

Content Language

繁體中文

Chinese Abstract

1. 旋環雙芴分子在光伏元件和有機電致發光元件之應用 予體(D)和受體(A)組成之旋環雙芴分子,具有傳輸電子和電洞的能力。此雙 極性的能力可以由可逆的氧化還原行為觀察並得知其分子是一個很好電子和電 洞傳輸的媒介。在本章節我們將旋環雙芴分子應用在光伏元件和有機電致發光元 件。 D-A 系統中若有激發態電子轉移的現象,將具有高效率之光電轉換率。而 D/A 介面通常是D 和A 雙層的介面、或物理混合的單層介面、甚至也有化學混 合(將D 和A 建構在一分子)。化學混合往往能得到高效率的電荷分離,然而化 學混合的分子其合成相當複雜,因此物理混合也許是另一個得到高效率電荷分離 的簡單方法。在第一章,我們引入噻吩,設計合成新型旋環雙芴之予體;引入 benzothiadiazole,計設合成新型旋環雙芴之受體,並將其製備D:A 物理混合成單 層元件,研究探討予體和受體在光伏元件的作用。 第二章我們討論旋環雙芴雙極性分子在有機電致發光之主體材料的應用。旋 環雙芴雙極性分子為主體材料,搭配Ir 錯合物可以製備簡單的紅光(CIE at x=0.66, y=0.34)元件結構。在旋環雙芴分子上引入CN 作為受體,另外引入二苯胺作為予 體,其分子在電化學中具有可逆的氧化還原,具有傳輸載子的能力,另外分子的 HOMO/LUMO 能階可以幫助載子由電極注入到發光層元件,主體材料之三重態 能階高,適合摻雜紅光染料。元件的結構如下:ITO/HIL (Hole Injection Layer)/D-A host:Mpq2Iracac/LiF/Al,相當簡單的元件結構,但具有相當高之量子效率。 2. Benzothiadiazole 衍生物在電化學發光(ECL)和利用掃描電化學顯微鏡 (SECM)做表面圖形技術之應用 Benzothiadiazole 的衍生物具有高效率的綠光放光,是一個很好的放光元件。 在這個研究中,我們將其benzothiadiazole 的衍生物應用在電致化學放光元件和 click chemistry 鍵結螢光分子之SECM 奈米圖形法。 第三章為電致化學放光的研究,這一系列benzothiadiaozle 衍生物(BH0−BH3) 和寡聚芴衍生物(AB2, C01, FAF, FPF, and FDF)具有高量子效率的放光。由電化 學實驗中,我們揭露分子結構和電化學性質的關係。這一系列分子皆有可逆的氧 化還訊號,可以穩定生成自由基陰陽離子,且具有高量子螢光放光,適合作綠光 電致放光元件。 第四章為掃描電化學顯微鏡的應用,SECM 可以製備微米/奈米的圖形化結 構。我們提出一新型SECM 奈米圖形化之技術:透過使用SECM 和click chemistry 將螢光分子連接到基板上。這種方法大概也適用於轉移其他分子或nanoparticles 到基板上。另外我們發現結合SECM 和click chemistry 做的圖形化技術會引起類 似Liesegang ring 的生成。圖形化的大小和幾何位置可以透過探針大小和探針- 基板的相對距離來控制。

English Abstract

1. The Applications of Spirobifluorene-configured Bipolar Materials in Photovoltaics and Electrophosphorescence Devices Spirobifluorene-configured bipolar materials, consisting of donor (D) and acceptor (A) moiety, are potentially capable of carrying both holes and electrons. These bipolar materials, possessing reversible oxidation and reduction behavior, can be considered as a promising matrix for hole and electron transporting. Here we demonstrate the applications of spirobifluorene-bridged bipolar derivatives in photovoltaics and electrophosphorescence devices. A D-A system with efficient photon-to-electron conversion requires effective charge separation from optically generated excitons. Such D/A interfaces may be implemented by putting D/A chromophores in layered structures, in blends (mixtures), or even in chemically linked structures. The chemical blends can achieve a highly efficient charge separation, but the chemical syntheses are sophisticated. Hence physical blends could be another much easier way to achieve such purpose. Therefore we designed and synthesized novel donor and acceptor molecules incorporated thiophene and benzothiadiazole moieties with 9,9’-spirobifluorene, respectively, and investigated them in photovoltaic applications. On the other hand, a highly efficient electrophosporescent device with a simple device structure giving saturated red emission (CIE at x=0.66, y=0.34) has been achieved by doping an iridium complex (Mpq2Iracac) into a novel, ambipolar, spiro-configured D-A host material. After introducing cyano groups and diarylamine moieties into different biphenyl branches of 9,9’-spirobifluorene, respectively, it possesses balanced electron- and hole-transporting ability, suitable HOMO/LUMOlevels for carrier injection from an electrode, and an appropriate triplet energy gap for a red guest. The device configured as: ITO/HIL (Hole Injection Layer)/D-A host:Mpq2Iracac/LiF/Al, exhibited a highly efficient electrophosporescent device with a simple device structure. 2. The Applications of Benzothiadiazole Derivatives in Electrogenerated ChemiLuminescence (ECL) and Surface Patterning Directed by Scanning Electrochemical Microscopy (SECM) Promoted Click Chemistry Benzothiadiazole derivatives, possessing highly efficient green light emission, are very useful in light-emitting devices. Here we demonstrated the applications of benzothiadiazole derivatives in electro-generated chemiluminescence (ECL) and surface patterning directed by scanning electrochemical microscopy (SECM) promoted click chemistry. A series of highly fluorescent benzothiadiazole derivatives (BH0−BH3) and fluorene derivatives (AB2, C01, FAF, FPF, and FDF) were synthesized and characterized. By cyclic voltammetric study, we unveiled the relationships between molecular structure and electrochemical properties. These highly fluorescent benzothiadiazole derivatives with reversible oxidation and reduction waves are applied for green ECL. The ECL could be seen by the naked eye even in a well lit room. Such strong ECL emitters are not common in the field of electrogenerated chemiluminescence, especially for green ECL emitters. SECM-based surface patterning can be achieved to form useful micro/nano structures for various kinds of applications. Alkyne functionalized benzothiadiazole derivatives can be transformed into a triazole ring with a azide-terminated reagent anchored on a substrate. Here we reported a novel SECM-based surface patterning of fluorescence molecules on a solid substrate, by proceeding with click chemistry reaction to form a covalent bond and. The pattern image can be observed from a fluorescence microscopy.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. 1 K. Bücher and S. Kunzelmann, Proceedings of the 26th Photovoltaic Specialist Conference, 1997, p. 1193.
    連結:
  2. 2 Brabec, C. J.; Saricitfcti, N. S.; Hummelen, J.C. Adv. Funct. Mater. 2001, 11, 15.
    連結:
  3. 3 Photoinduced Electron Transfer (Eds.: M. A. Fox, M. Chanon), Elsevier, Amsterdam, 1988.
    連結:
  4. 5 Tang, C.W. Appl. Phys. Lett. 1986, 48, 183.
    連結:
  5. 9 Peumans, P.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 126.
    連結:
  6. 11 (a) Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A.J. Adv. Funct. Mater. 2005, 15, 1617; (b) Lg, G.; Shrotriya, V.; Huang, J.; Yao,Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864.
    連結:
  7. 13 Uhrich, C.; Schueppel, R.; Petrich, A.; Pfeiffer, M.; Leo, K.; Brier, E. Adv. Funct. Mater. 2007, 17, 2991.
    連結:
  8. 14 Lin, H. W.; Ku, S. Y.; Su, H. C.; Huang, C. W.; Lin, Y. T.; Wong, K. T.; Wu, C. C Adv. Mater. 2005, 17, 2489.
    連結:
  9. 16Wu, C. C.; Hung, W. Y.; Liu, T. L.; Zhang, L. Z.; Luh, T. Y. J. Appl. Phys. 2003, 93, 5465.
    連結:
  10. 18 Peumans, P.; Forrest, S. R. Chem. Phys. Lett. 2004, 398, 27.
    連結:
  11. 2 Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610.
    連結:
  12. 3 Shen, C.; Hill, I. G.; Kahn, A. Adv. Mater. 1999, 11, 1523.
    連結:
  13. 5 Ishida, T.; Kobayashi, H.; Nakato, Y. J. Appl. Phys. 1993, 73, 4334.
    連結:
  14. 6 Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489.
    連結:
  15. 8 (a) Elschner, A.; Bruder, F.; Heuer, H. W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Thurm, S.; Wehrmann, R. Synth. Met. 2000, 111, 139; (b) Brown, T. M.; Kim, J. S.; Friend, R. H.; Cacialli, F.; Daik, R.; Feast, W. J. Appl. Phys. Lett. 1999, 75, 1679. 9 Vanslyke, S. A.; Chen, C. H.; Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160.
    連結:
  16. 10 Blochwitz, J.; Pfeiffer, M.; Fritz, T.; Leo, K. Appl. Phys. Lett. 1998, 73, 729.
    連結:
  17. 13 Li, Z. H.; Wong, M. S.; Fukutani, H.; Tao, Y. Chem. Mater. 2005, 17, 5032.
    連結:
  18. 14 Zhang, H.; Huo, C.;Zhang, J.; Zang, P.; Tian, W.; Wang, Y. Chem. Comm. 2006, 281.
    連結:
  19. 15 Liao, Y. L.; Lin, C. Y.; Wong, K. T., Hou, T. H.; Hung, W. Y. Org. Lett. 2007, 9, 4511.
    連結:
  20. 17 Lai, M. Y.; Chen, C. H.; Huang, W. S.; Lin, J. T.; Ke, T. H.; Chen, L. Y.; Tsai, M. H.; Wu, C. C. Angew. Chem. Int. Ed. 2008, 47, 581.
    連結:
  21. 18 Lin, H. W.; Ku, S. Y.; Su, H. C.; Huang, C. W.; Lin, Y. T.; Wong, K. T.; Wu, C. C Adv. Mater. 2005, 17, 2489.
    連結:
  22. 19 Hung, W. Y.; Tsai, T. C.; Wong, K. T.; Ku, S. Y.; Chi, L. C. Phys. Chem. Chem. Phys. 2008, 10, 5822.
    連結:
  23. 24 Wong, K. T.; Chen, H. F.; Fang, F. C. Org. Lett. 2006, 8, 3501
    連結:
  24. 25 Hosseini, S. H.; Entezami, A. A. J. Appl. Polym. Sci. 2003, 90, 63.
    連結:
  25. 26 Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599.
    連結:
  26. 4 Sartin, M. M.; Zhang, H.; Zhang, J.; Zhang, P.; Tian, W.; Wang. Y.; Bard, A. J. J. Phys. Chem. C, 2007, 111, 16350.
    連結:
  27. 5 Desvergne, J. P.; Czarnik, A. W. Chemosensors for Ion and Molecule Recognition; Kluwer:Dlordrecht, 1997.
    連結:
  28. 6 Gilbert, A.; Baggott, J. Essentials of Molecular Photochemistry, Oxford: London, 1991.
    連結:
  29. 10 (a) Wong, K. T.; Chien, Y. Y.; Chen, R. T.; Wang, C. F.; Lin, Y. T.; Chiang, H. H.; Hsieh, P. Y.; Wu, C. C.; Chou, C. H.; Su, Y. O.; Lee, G. H.; Peng, S. M. J. Am. Chem. Soc. 2002, 124, 11576; (b) Wu, F. I.; Dodda, R.; Reddy D. S.; Shu , C. F. J. Mater. Chem. 2002, 12, 2893; (c) Tsolakis, P. K..; Kallitsis, J. K. Chem. Eur. J. 2003, 9, 936; (d) Wu, C. C.; Lin, Y. T.; Wong, K. T.; Chen, R. T.; Chien, Y. Y. Adv. Mater. 2004, 16, 61.
    連結:
  30. 12 Choi, J. P.; Wong, K. T.; Chen, Y. M.; Yu, J. K.; Chou, P. T.; Bard, A. J. J. Phys. Chem. B 2003, 107, 14407.
    連結:
  31. 14 Rashidnadimi, S.; Hung, T. H.; Wong, K. T.; Bard, A.J. J. Am. Chem. Soc. 2008, 130, 634.
    連結:
  32. 15 Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Kluwer Academic: New York, 1999.
    連結:
  33. 16 Marcus, R. A. J. Phys. Chem. 1989, 93, 3078.
    連結:
  34. 17 Sartin, M. M.; Shu, C.; Bard, A. J. J. Am. Chem. Soc. 2008, 130, 5354.
    連結:
  35. 18 Mann, C. K.; Barnes, K. K. Electrochemical Reaction in Nonaqueous Systems; Marcel Dekker: New York, 1970.
    連結:
  36. 21 (a) Fleet, B.; Kirkbright, G. F.; Pickford, C. J. Electro. Chem. 1971, 30, 115; (b) Birks, J. B.; Christopherou, L. G. Spectrochim. Acta 1963, 19, 401.
    連結:
  37. 2 Blawas, A. S.; Reichert, W. M. Biomaterials 1998, 19, 595.
    連結:
  38. 3 Rozkiewicz, D. I.; Janczewski, D.; Verboom, W.; Ravoo, B. J.; Reinhoudt, D. N. Angew. Chem. Int. Ed. 2006, 45, 5292.
    連結:
  39. 5 Piner, R.D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, 661
    連結:
  40. 8 Lin, C. W.; Fan, F.-R.; Bard, A.J. J. Electrochem. Soc.1987, 134, 1038.
    連結:
  41. 9 Craston, D.H.; Lin, C. W.; Bard, A. J. J. Electrochem. Soc.1988, 135, 785.
    連結:
  42. 10 Wuu, Y.-M.; Fan, F.-R.; Bard, A. J. J. Electrochem. Soc.1989, 136, 885.
    連結:
  43. 13 Mandeler, D; Bard, A. J. Electrochem. Soc. 1990, 137, 2468.
    連結:
  44. 14 Wuu, Y.-M.; Fan, F.-R.; Bard, A.J. J. Electrochem. Soc. 1989, 136, 885.
    連結:
  45. 16 Borgwarth, K.; Ricken, C.; Ebling, D.G.; Heinze, J. Ber. Bunsenges. Phys. Chem. 1995, 99, 1421.
    連結:
  46. 17 Marck, C.; Borgwarth, K.; Heinze, J. Adv. Mater. 2001, 13, 47.
    連結:
  47. 23 Lummerstorfer, T.; Hoffmann, H. J. Phys. Chem. B 2004, 108, 3963.
    連結:
  48. 26 Tripp, C. P.; Hair, M. L. Langmuir 1992, 8, 1120.
    連結:
  49. 27 Sindorf, D. W.; Maciel, G. E. J. Am. Chem. Soc. 1981, 103, 4263.
    連結:
  50. 28 Balachander, N.; Sukenik, C. N. Langmuir 1990, 6, 1621.
    連結:
  51. 29 Brandriss, S.; Margel, S. Langmuir 1993, 9, 1232.
    連結:
  52. 30 Fryxell, G. E.; Rieke, P. C.; Wood, L. L.; Engelhard, M. H.; Williford, R. E.; Graff, G. L.; Campbell, A. A.; Wiacek, R. J.; Lee, L.; Halverson, A. Langmuir 1996, 12, 5064.
    連結:
  53. 31 Balachander, N.; Sukenik, C. N. Langmuir 1990, 6, 1621.
    連結:
  54. 33 Samide, M. J.; Peters, D. G. J. Electroanal. Chem 1998, 443, 95.
    連結:
  55. 34 Chopard, B.; Luthi, P. Phy. Rev. Lett. 1994, 72, 1384.
    連結:
  56. 35 Bard, A. J. Scanning Electrochemical Microscopy; Bard, A. J., Mirkin, M. V., Eds.; Marcel Dekker: New York, 2001.
    連結:
  57. 4 (a) Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Scanchez, L.; Hummele, J. C. Adv. Funct. Mater. 2001, 11, 374; (b) Gadisa, A.; Svensson, M.; Andersson, M. R.; Inganas, O. Appl. Phys. Lett. 2004, 84, 169.
  58. 6 (a)Yu, G; Zhang, C.; Heeger, A. J. J. Appl. Phys. Lett. 1994, 64, 1540; (b)Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science, 1992, 258, 1474; (c) Smilowitz, L.; Sariciftci, N. S.; Wu, R.; Gettinger, C.; Heeger, A. J.; Wudl, F. Phys. Rev. B 1993, 47, 13835.
  59. 7 Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A. J. Science, 1995, 270, 1789.
  60. 8 (a)Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nat. Mater. 2007, 6, 497; (b) Lee, J. K.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J. J. Am. Chem. Soc. 2008, 130, 3619.
  61. 12 Bach, U.; Lupo, D.; Comte, P.; Mose J. E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel Nature 1998, 395, 583.
  62. 15 Wong, K. T.; Ku, S. Yu, Cheng, Y. M.; Lin, X. Y., Hung, Y. Y.; Pu, S. C.; Chou, P. T.; Lee, G. H.; Peng, S. M. J. Org. Chem. 2006, 71, 456.
  63. 17 (a) Brabec, C. J.; Shaheen, S. E.; Winder, C.; Sariciftci, N. S.; Denk, P. Appl. Phys. Lett. 2002, 80, 1288; (b) Peumans, P.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 126.
  64. 19 Peumans, P.; Yakimov, A.; Forrest, S. R. J. Appl. Phys. 2003, 93, 3693.
  65. CH2
  66. 1 Pope, M.; Kalimann, H. P.; Mangante, P. J. Chem. Phys. 1963, 38, 2042.
  67. 4 Haskal, E. I.; Curioni, A.; Seidler, P. F.; Andreoni, W. Appl. Phys. Lett. 1997, 71, 1151.
  68. 7 (a) Chen, B.; Lee, C. S.; Lee, S. T.; Webb, P.; Chan, Y. C.; Gambling, W.; Tian, H.; Zhu. W. Jpn. J. Phys. Part1, 2000, 39, 1190; (b) Fujikawa, H.; Ishii, M.; Tokito, S.; Taga, Y. Mater. Res. Soc. Symp. Proc. 2000, 621, Q3.4.1.
  69. 11 Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R. Nature 1998, 395, 151.
  70. 12 Sudhakar, M.; Djurovich, P. I.; Hogen-Esch, T. E.; Thompson, M. E. J. Am. Chem. Soc. 2003, 125, 7796.
  71. 16 Huang, T. H.; Lin, J. T.; Chen, L. Y.; Lin, Y. T.; Wu, C. C. Adv. Mater. 2006, 18, 602.
  72. 20 Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K.; Appl. Phys. Lett. 1994, 65, 807.
  73. 21 McGehee, M. D.; Bergstedt, T.; Zhang, C.; Saab, A. P.; O’Regan, M. B.; Bazan, G. C.; Srdanov, V. I.; Heeger, A. J. Adv. Mater. 1999, 11, 1349.
  74. 22 Kawamura, Y.; Brooks, J.; Brown, J. J.; Sasabe, H.; Adachi, C. Phys. Rev. Lett. 2006, 96, 017404.
  75. 23 Wong, K. T.; Ku, S. Yu, Cheng, Y. M.; Lin, X. Y., Hung, Y. Y.; Pu, S. C.; Chou, P. T.; Lee, G. H.; Peng, S. M. J. Org. Chem. 2006, 71, 456.
  76. CH3
  77. 1 For review of ECL: (a) Bard, A. J. Electrogenerated Chemiluminescence; Marcel Dekker: New York, 2004; (b) Richter, M. M. Chem. Rev. 2004, 104, 3003.
  78. 2 (a) Omer, K. M.; Kanibolotosky, A. L.; Skabara, P. J.; Perepichka, I. F.; Brad, A. J. J. Phys. Chem. B 2007, 111, 6612; (b) Lai, R.Y.; Fleming, J. J.; Merner, M. L.; Vermeij, R. J.; Bodwell, G. J.; Bard, A. J. J. Phys. Chem. A 2004, 108, 376.
  79. 3 (a) Cruser, S. A., Bard, A. J. Anal. Lett. 1967, 1, 11; (b) Faulkner, L. R., Bard, A. J. J. Am. Chem. Soc. 1968, 90, 6284.
  80. 7 (a) Chang, M. M.; Saji, T.; Bard, A. J. J. Am. Chem. Soc. 1977, 99, 5399; (b) Rubinstein, I.; Bard, A. J. J. Am. Chem. Soc. 1981, 103, 512.
  81. 8 (a) Chandross, E.; Sonntag, F. J. Am. Chem. Soc. 1966, 88, 1089; (b) Santacruz, T. D.; Akins, D. L.; Brike, R. L. J. Am. Chem. Soc. 1976, 98, 1677.
  82. 9 (a) Hoytin, G. J. Discuss. Faraday Soc.1968, 45, 14; (b) Kinght, A. W.; Greenway, G. M. Analyst, 1994, 119, 879.
  83. 11 (a) Geng, Y.; Katsis, D.; Culligan, S. W.; Ou, J. J.; Chen, S. H.; Rothberg, L. J. Chem. Mater. 2002, 14, 463; (b) Li, Y.; Ding, J.; Day, M.; Tao, Y.; Lu, Jianping .; D’iorio, M. Chem. Mater. 2003, 15, 4936; (c) Culligan, S. W.; Geng, Y.; Chen, S.H.; klubek, K.; Vaeth, K. M.; Tang, C. W. Adv. Mater. 2003, 15, 1176.
  84. 13 Fungo, F.; Wong, K. T.; Ku, S. Y.; Hung, Y. Y.; Bard, A. J. J. Phys. Chem. B 2005, 109, 3984.
  85. 19 (a) Coleman, A. E.; Richtol, H. H.; Aikens, D. A. J. Electro.Chem. 1968, 18,165; (b) Werner, T. C.; Chang, J.; Hercules, D. M. J. Am. Chem. Soc. 1970, 25, 763.
  86. 20 Yasuda, T.; Imase, T.; Yamamaoto, T. Macro. 2005, 38,7378.
  87. CH4
  88. 1 Nicolau, D. V.; Tauguchi, T.; Taniguchi, H.; Yoshikawa S. Langmuir 1998, 14, 1927.
  89. 4 Lee, K.-B.; Park, S.-J; Mirkin, C. A.; Smith, J. C.; Mrksich, M. Science 2002, 295, 1702.
  90. 6 Long, D. A.; Unal, K.; Pratt, R. C.; Malkoch, M.; Frommer, J. Adv. Mat. 2007, 19, 4771.
  91. 7 Shiku, H.; Uchida, I.; Mastue, T Langmuir 1997, 13, 7329.
  92. 11 Kranz, C.; Ludwig, M.; Gaub, H.E. ; Schuhmann, W. Adv. Mater. 1995, 7, 38.
  93. 12 Shiku, H.; Uchida, I.; Matsue, T. Langmuir 1997, 13, 7329.
  94. 15 Kranz, C.; Ludwig, M.; Gaub, H.E.; Schuhmann, W. Adv. Mater. 1995, 7, 38.
  95. 18 Shiku, H.; Uchida,I.; Matsue, T. Langmuir 1997, 12, 7329.
  96. 19 Li, X.; Geng, Q.; Wang, Y.; Si, Z.; Jiang, W.; Zhange, X.; Jin, W. Electrochem. Acta 2007, 53, 2016.
  97. 20 Sharpless, K.B.; Fokin, V. V.; Green, L. G.; Rostovtsev, V. V. Angew. Chem. Int. Ed. 2002, 41, 2596.
  98. 21 Meldal, M.; Christensen, C.; Tornoe, C. W. J. Org. Chem. 2002, 67, 3057.
  99. 22 (a) Collman, J. P.; Devaraj, N. K.; Chidsey, C. E. D. Langmuir 2004, 20, 1051; (b) Lee, J. K.; Chi, Y. S .; Choi, I. S. Langmuir 2004, 20, 3844; (c) Zirbs, R.; Kienberger, F.; Hinterdorfer, P.; Binder, W. H. Langmuir 2005, 21, 8414.
  100. 24 Li, H.; Cheng, F.; Duft, A. M.; Adronov, A. J. Am. Chem. Soc. 2005, 127, 14518.
  101. 25 Diaz, D. D.; Punna, S.; Holzer, P.; McPherson, A. K.; Sharpless, K. B.; Fokin, V. V.; Finn, M. G. J. Polym. Sci. A 2004, 42, 4392.
  102. 32 Devaraj, N. K.; Dinolfo, P. H.; Chidsey, C. E. D.; Collman, J. P. J. Am. Chem. Soc. 2006, 128, 1794.