Translated Titles

Model Uncertainty in FEM-based Slope Stability Analysis





Key Words

有限元素法 ; 強度折減法 ; 破壞準則 ; 可靠度分析 ; 極限平衡法 ; 可靠度指標 ; finite element method ; strength reduction method ; failure criteria ; reliability analysis ; limit equilibrium method ; reliability index



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

基於有限元素法之強度折減法被認為是計算安全係數最正確的方法,其優點為滿足力平衡及力矩平衡、真實考慮到變形量、不需先行假設臨界滑動面。 本研究基於蒐集世界各地之43個已破壞黏土邊坡案例的文獻,參考其中記載的邊坡相關資料進行邊坡模型的模擬,過程中利用不同土壤參數之文獻回顧等將其誤差降至最低。再利用基於有限元素法之強度折減法,於不同破壞準則中分析其安全係數,同時也將其結果與極限平衡法分析的結果作比較與探討。 另一方面,利用可靠度分析建立起利用基於有限元素法之強度折減法計算出來的安全係數與可靠度指標和破壞機率之間的轉換關係,利用此轉換關係可以分析出一未知邊坡之安全性,以期未來可以作為邊坡整治的一個參考依據。 基於有限元素法之強度折減法分析其邊坡模型之安全係數對於穩定性分析是有貢獻的,相對於極限平衡法的分析模式中,以有限元素法為分析背景下,其中不僅滿足了所有力平衡與力矩平衡方面的應力問題,同時也參考了楊氏模數值進行整體變形量的計算,其分析結果的誤差程度也比其他穩定性分析方法更好。 未來希望於邊坡模型當中可以加入土壤參數的空間變異性以及更多可能誤差項目校正,再者於一些外部力量因素影響的模擬,如可能發生的動態因素像降雨、地震等,在未來也希望邊坡模型中能加入這些模擬元素,以期盼這個分析模式能更趨於完整。

English Abstract

FEM-based strength reduction method is considered to be the most correct way to calculate the factor of safety, the advantages are that satisfy the force equilibrium and moment equilibrium, take into account the deformation factually and do not need to assume the critical slip surface at first. In this study, we collect references which include 43 numbers of collapsed clay slope examples around the world to simulate the slope model and also minimize the biases in literatures review of different soil parameters. Use FEM-based strength reduction method to analyze the factor of safety in different failure criteria and also compare and discuss with the results of the limit equilibrium metod. On the other hand, use reliability analysis to establish the transformation relation between the factort of safety calculated by using FEM-based strength reduction method, reliability index and failure probability. Use this transformation relation can be able to analyze the safety of an unknown slope, we hope this can be used as a reference for the remediation of slope. Use FEM-based strength reduction method to analyze the factor of safety of slope models is a great contribution to stability analysis. Relative to the limit equilibrium method, the finite element method satisfies not only force but also moment equilibrium and considers Young's modulus, this method is better than others. In the future, we hope that can consider the spatial variability of soil parameters in the slope model. Moreover, simulate the external force factors like rainfall, earthquakes, etc. to make this analytical model more complete.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
  1. Bjerrum, L. and Kjaernsli, B. (1957). Analysis of the stability of some norwegian natural clay slopes. Geotechnique, Vol. 7, No. 1, pp. 1-16.
  2. Chai, J-C., Miura, N., Shen, S-L. (2002). Performance of embankment with and without reinforcement on soft subsoil. Canadian Geotechnical Journal, Vol 39,
  3. Chang, Y.L. and Huang, T. K. (2005). Slope stability analysis using strength reduction technique. Journal of the Chinese Institute of Engineers, Vol. 28, No. 2, pp. 231-240.
  4. Chen, Y.J. and Kulhawy, F.H. (1993). Undrained strength interrelationships among CIUC, UU, and UC Tests. Journal of Geotechnical Engineering, ASCE,119(11), 1732-1750.
  5. of Earth and Earth Supported Structures, 1(1), 129-158.
  6. Duncan, J.M. and Wright, S.G. (1980). The accuracy of equilibrium methods of
  7. Slope Stability. Eng. Geol., 16:5-17.
  8. Duncan, J.M. (1996). State of the art: limit equilibrium and finite-element analysis
  9. Lakes. Proceedings of Ninth International Conference on Soil Mechanics and
  10. Foundation Engineering, 2, 51-57.
  11. Ferkh, Z., and Fell, R. (1994). Design of embankments on soft clay. Proceedings of
  12. Thirteenth International Conference on Soil Mechanics and Foundation
  13. Engineering, 2, 733-738.
  14. Flaate, K. and Preber, T. (1974). Stability of road embankments in soft clay.
  15. Canadian Geotechnical Journal., 2(1), 72-88.
  16. Griffiths, D.V. and Lane P.A. (1999). Slope stability analysis by finite element
  17. method. Geotechnique 49, No. 3, 387-403.
  18. Hanzawa, H. (1980). Stability analysis and field behaviour of earth fills on an
  19. Hanzawa, H. (1983). Three case studies for short term stability of soft clay deposits.
  20. application of direct shear and cone penetration tests to soil investigation,
  21. Ireland, H.O. (1954). Stability analysis of the Congress Street open cut in Chicago.
  22. Geotechnique 4, 163-168.
  23. Kjaernsli, B. and Simons, N. (1962). Stability investigations of the North Bank of
  24. the Drammen River. Geotechnique, Volume 12, Issue 2, pages 147 –167.
  25. foundation design. Geotechnical Engineering Group, Cornell University,
  26. embankment on a sensitive Champlain clay deposit. Canadian Geotechnical
  27. embankments on New Liskeard varved clay. Canadian Geotechnical Journal,
  28. Earth and Earth-Supported Structures, 1(1), 101-128.
  29. excavation in soft Champlain Sea clay. Canadian Geotechnical Journal.,
  30. Mesri, G. and Huvaj, N. (2007). Shear strength mobilized in undrained failure of
  31. Phoon, K. K. (1995). Reliability-based design of foundations for transmission line
  32. Pilot, G. (1972). Study of five embankments on soft soils. ASCE Specialty
  33. Conference Performance of Earth and Earth Supported Structures, 1(1), 81-99.
  34. Sevaldson, R.A. (1956). The slide in Lodalen, October 6, 1954. Geotechnique, 6,
  35. Talesnick, M. and Baker, R. (1984). Comparison of observed and calculated slip
  36. surface in slope stability calculations. Faculty of Civil Engineering, Technion.
  37. Israel Institute of Technology, Haifa, Israel.
  38. approach to the stability analysis of embankment on sensitive clays.
  39. Wu, T.H., Thayer, W.B. and Lin, S.S. (1975). Stability of embankment on clay.
  40. Journal of the Geotechnical Engineering Division, ASCE, 101(9), 913-932.
  41. Supported Structures, 1(1), 29-63.
  42. No. 4, pp. 838-848.
  43. Dascal, O., Tournier, J.P., Tavenas, F., and La Rochelle, P. (1972). Failure of a test
  44. embankment on sensitive clay. ASCE Specialty Conference on Performance
  45. slope stability analysis. In: S.L. Koh (Editor), Mechanics of Landslides and
  46. of slopes. Journal of Geotechnical Engineering, July, 1996. ASCE, P: 77-596.
  47. Edil, T.B., and Vallejo, L.E. (1977). Shoreline erosion and landslides in the Great
  48. Eide, O. and Holmberg, S. (1972). Test fills to failure on the soft Bangkok clay.
  49. Proceedings, Specialty Conference on Performance of Earth and
  50. Earth-Supported Structures, ASCE, 1, 1-12.
  51. alluvial marine clay. Soils and Foundations, Vol. 20, No. 4, 37-51.
  52. Soils and Foundations, Vol. 23, No. 2, 140-154.
  53. Hanzawa, H., Kishida, T., Fuksawa, T., Asada, H. (1994). A case study of the
  54. design and quality control for peaty soils. Soils and Foundation, Vol. 34, No.
  55. 4, 13-22.
  56. Kishida, T., Hanzawa, H., Nakanowatari, M. (1983). Stability analysis with the
  57. simple and the advanced φ = 0 method for a failed dike. Soils and Foundations, Vol. 23, No. 2, 69-82.
  58. Kulhawy, F. H. and Mayne, P. W. (1990). Manual on estimating soil properties for
  59. Ithaca, N.Y.
  60. La Rochelle, P., Trak, B., Tavenas, F., and Roy, M. (1974). Failure of a test
  61. Journal., 11(1), 142-164.
  62. Lacasse, M.S., Ladd, C.C. and Barsvary, A.K. (1977). Undrained behavior of
  63. 14, 367-388.
  64. Ladd, C.C. (1972). Test embankment on sensitive clay. Proceedings, Performance of
  65. Lafleur, J., Silvestri, V., Asselin, R., and Soulie, M. (1988). Behaviour of a test
  66. 23(4), 705-715.
  67. soft clay and silt deposits. ASCE, Geo-Denver (2007): New Peaks in
  68. Geotechnics.
  69. structures. Ph.D. Dissertation, Cornell University, Ithaca, N.Y.
  70. Pilot, G., Trak, B., and La Rochelle, P. (1982). Effective stress analysis of the
  71. stablity of embankments on soft soils. Canadian Geotechnical Journal., 19(4),
  72. 433-450.
  73. Ramalho-Ortigao, J., Werneck, L., and Lacerda, W. (1983). Embankment failure on
  74. clay near Rio de Janeiro. Journal of Geotechnical Engineering, 109(11),
  75. 1460-1479.
  76. Raymond, G.P. (1973). Foundation failure of New Liskeard embankment. Highway
  77. Research Board Bulletin, 463, 1-17.
  78. 167-182.
  79. Trak, B., Rochelle, P.L., Tavenas, F.,Leroueil, S. and Roy, M. (1980). A new
  80. Canadian Geotechnical Journal, 17, 526-544.
  81. Wilkes, P. (1972). An induced failure at a trial embankment at Kings Lynn, Norfolk,
  82. England. Proceedings Specialty Conference Performance of Earth and Earth