Title

二維量子反鐵磁中的挫折性交互作用

Translated Titles

Frustrated Interactions in a 2D Quantum Antiferromagnet

DOI

10.6342/NTU.2008.00344

Authors

劉承瑋

Key Words

高溫超導 ; 銅氧平面 ; 隨機序列展開 ; 量子蒙地卡羅 ; 反鐵磁磁化率 ; high-Tc cuprate ; Stochastic Series Expansion ; Quantum Monte Carlo ; staggered magnetization ; Knight shift

PublicationName

臺灣大學物理研究所學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

碩士

Advisor

高英哲

Content Language

英文

English Abstract

We use the Stochastic Series Expansion Quantum Monte Carlo (SSE QMC) method [1, 2, 3] to study the impurity problem in the CuO2 plane of high-Tc superconducting materials. This plane is a 2D antiferromagnetic square lattice, at which the superconductivity usually occurs. Doping nonmagnetic impurities to replace Cu ions in this plane exhibits very strong electronic behavior. Hence the impurity problem forms an important class of strongly correlated electron systems. In the presence of impurities in the CuO2 plane, from previous study [4], people already know that there are staggered moments localized around impurity sites. If the impurity concentration increases, both the theoretical and numerical studies [5, 6, 7] suggested that, at some critical density, there is a vanishing staggered magnetization, which is a suitable order parameter in this antiferromagnetic system. However, there is a discrepancy between the theoretical prediction and the experimental results [8] at high impurity concentration. The numerical and theoretical results are slightly higher than the experimental one. The discrepancy mentioned above leads us to consider the impurity-induced frustration interaction [9, 10] in the system. Since frustration will further destroy the order of the system, this frustrated interaction may account for this discrepancy. In this thesis, numerical results for the staggered magnetization and the Knight shifts are presented. In the final part we show numerical results that support our suggestion that frustrations will further destroy the order of a system. Also, SSE QMC faces the notorious “sign problem” [11, 12] when dealing with frustrated systems, so the numerical results about the sign problem are also briefly discussed.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理研究所
Reference
  1. [1] A. W. Sandvik, Phys. Rev. B 59, R14 157 (1999).
    連結:
  2. [2] O. F. Sylju°asen and A. W. Sandvik, Phys. Rev. E 66, 046701 (2002).
    連結:
  3. [3] A. W. Sandvik and J. Kurkij‥arvi, Phys. Rev. B 43, 5950 (1991).
    連結:
  4. [4] A. V. Mahajan et al., Phys. Rev. Lett. 72, 3100 (1994).
    連結:
  5. [5] A. L. Chernyshev, Y. C. Chen, and A. H. Castro Neto, Phys. Rev. Lett. 87, 067209 (2001).
    連結:
  6. [6] A. W. Sandvik, Phys. Rev. B 66, 024418 (2002).
    連結:
  7. [7] K. Kato et al., Phys. Rev. Lett. 84, 4204 (2000).
    連結:
  8. [8] O. P. Vajk et al., Science 295, 1691 (2002).
    連結:
  9. [9] Y. J. Kim et al., Phys. Rev. B 64, 024435 (2001).
    連結:
  10. [10] S. Liu and S. Chernyshev, private communication .
    連結:
  11. [11] E. Y. Loh Jr. et al., Phys Rev. B 41, 9301 (1990).
    連結:
  12. [12] P. Henelius and A. W. Sandvik, Phys. Rev. B 62, 1102 (2000).
    連結:
  13. [14] F. Anfuso and S. Eggert, Phys. Rev. Lett. 96, 017204 (2006).
    連結:
  14. [15] S. Eggert and I. Affleck, Phys. Rev. Lett. 75, 934 (1995).
    連結:
  15. [20] G. H. Wannier, Phys. Rev. 79, 357 (1950).
    連結:
  16. [21] A. Yoshimori, J. Phys. Soc. Jpn. 14, 807 (1959).
    連結:
  17. [22] J. Villain, J. Phys. Chem. Solids 11, 303 (1959).
    連結:
  18. [24] C. L. Henley, Phys. Rev. Lett. 62, 2056 (1989).
    連結:
  19. [25] D. C. Handscomb, Proc. Cambridge Philos. Soc. 58, 594 (1962).
    連結:
  20. [26] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Mechanics
    連結:
  21. [27] N. Metropolis et al., J. Chem Phys. 21, 1087 (1953).
    連結:
  22. [28] A. W. Sandvik, Phys. Rev. B 56, 11678 (1997).
    連結:
  23. [29] J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).
    連結:
  24. [30] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278 (1981).
    連結:
  25. [31] J. E. Hirsch, Phys. Rev. B 28, 4059 (1983).
    連結:
  26. [32] G. M. Buendia, Phys. Rev. B 33, 3519 (1986).
    連結:
  27. [34] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B 39, 2344 (1989).
    連結:
  28. [35] P. Hasenfratz and F. Niedermayer, Phys. Lett. B 268, 231 (1991).
    連結:
  29. [37] J. D. Reger and A. P. Young, Phys. Rev. B 37, 5978 (1988).
    連結:
  30. [38] J. Igarashi, Phys. Rev. B 46, 10763 (1992).
    連結:
  31. [13] http://www.physics.ubc.ca/ berciu/RESEARCH/ .
  32. [16] A. W. Sandvik, E. Dagotto, and D. J. Scalapino, Phys. Rev. B 56, 11701 (1997).
  33. [17] N. Bulut, D. Hone, D. J. Scalapino, and E. Y. Loh, Phys. Rev. Lett. 62, 2192 (1989).
  34. [18] G. B. Martins, M. Laukamp, J. Riera, and E. Dagotto, Phys. Rev. Lett. 78, 3563 (1997).
  35. [19] S. Eggert, O. F. Syljuasen, F. Anfuso, and M. Andres, Phys. Rev. Lett. 99, 097204 (2007).
  36. [23] J. Villain, R. Bidaux, J. P. Carton, and R. Conte, J. Phys. (Paris) 41, 1263 (1980).
  37. (Cambridge University Press, 2000).
  38. [33] E. H. Lieb and D. C. Mattis, J. Math. Phys. (N.Y.) 3, 749 (1962).
  39. [36] B. B. Beard, R. J. Birgeneau, M. Greven, and U.-J. Wiese, Phys. Rev. Lett. 80, 1742 (1998).