Title

綠色能源之奈米觸媒合成及特性研究

Translated Titles

Synthesis and Characterization of Nanocatalysts in Green Energy

Authors

蔡智文

Key Words

綠色能源 ; 觸媒 ; 氧氣還原反應 ; 燃料電池 ; green energy ; catalyst ; oxygen reduction reaction ; fuel cell

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

博士

Advisor

劉如熹

Content Language

英文

English Abstract

Green energy is one kind of energy that produces less negative impacts on the environment than those of fossil fuels. The goal of green energy is generally to create power which releases less pollution than those of fossil fuels. Therefore, the conservation of energy through architectural design is very important for the future. In order to reach this target, we design various catalysts applied in the green energy, demonstrating high efficiency in catalysis reaction. This thesis will be divided into two parts concerning green energy- fuel cells and photocatalysts. In the research of fuel cells, a carbon-incorporated method is used to enhance the iron-based nitride catalysts for oxygen reduction reaction at the cathode. Herein, the carbon supports of BP 2000 (commercial products for carbon material) and graphene are used to elucidate the related studies. X-ray photoelectron spectroscopy results demonstrate that the environment of nitrogen is composed of pyridine-like, pyrrole-like and graphite-like nitrogen. Highly active graphite-like nitrogen is superior to pyridine-like nitrogen due to the structural environment. The presence of metal carbide and the role in the electrocatalyst is confirmed by using X-ray absorption spectroscopy, indicating a possible mechanism for addition of carbon in this system. On the other hand, we also deal with the catalysts for hydrogen generation from NaBH4 hydrolysis. The Fe@Co catalyst possessing high activity is synthesized by replacing Co with Fe. The Arrhenius activation energy plots that Fe@Co has the lowest activation energy in the catalysis reaction than those of FeCo and Co, elucidating that this catalyst can promote the reaction in the process. X-ray absorption near edge spectroscopy (XANES) demonstrate that Fe core contained in the Co shell (Fe@Co) can be less oxidized than FeCo alloy nanoparticles, clarifying their structural difference between Fe@Co, FeCo and Co. In the research of photocatalysts, we try to synthesize a highly efficient catalyst for photocatalytic reduction of CO2 under visible light irradiation in a suspension solution. Ni@NiO/InTaO4-N photocatalyst is fabricated by using N-doped method and deposition of Ni@NiO core-shell cocatalysts, enhancing the overall catalytic efficiency. Diffuse reflectance spectroscopy demonstrates the red shift in the wavelength and the enhancement of absorbance for Ni@NiO/InTaO4-N photocatalyst. XAS approach shows the N-doped effect and cocatalytic impact on the modification of InTaO4, expounding a reasonable catalysis process.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. Chapter 1
    連結:
  2. 2. Somorjai, G. A.; Frei, H.; Park, J. Y. “Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques” J. Am. Chem. Soc. 2009, 131, 16589.
    連結:
  3. 3. Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Orendorff, C. J. “One-dimensional colloidal gold and silver nanostructures” Inorg. Chem. 2006, 45, 7544.
    連結:
  4. 4. Zande, B. M. I.; Bohmer, M. R.; Fokkink, L. G. J.; Schonenberger, C. “Aqueous gold sols of rod-shaped particles” J. Phys. Chem. B 1997, 101, 852.
    連結:
  5. 5. Kim, F.; Song, J. H.; Yang, P. “Photochemical synthesis of gold nanorods” J. Am. Chem. Soc. 2002, 124, 14316.
    連結:
  6. 6. Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C. “Gold Nanorods: Electrochemical synthesis and optical properties” J. Phys. Chem. B 1997, 101, 6661.
    連結:
  7. 7. Martin, C. R.; Vandyke, L.S.; Cai Z. H.; Liang W. B. “Template synthesis of organic microtubules” J. Am. Chem. Soc. 1990, 112, 8976.
    連結:
  8. 8. Che, G. L.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. “Carbon nanotubule membranes for electrochemical energystorage and production” Nature 1998, 393, 346.
    連結:
  9. 9. Che, G. L.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R.; Ruoff, R. S. “Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers Using a template method” Chem. Mater. 1998, 10, 260.
    連結:
  10. 10. Li, J.; Papadopoulos, C.; Xu, J. M.; Moskovits, M. Appl. Phys. Lett. “Highly-ordered carbon nanotube arrays for electronics applications” 1999, 75, 367.
    連結:
  11. 11. Liang, Z. J.; Susha, A. S.; Yu, A. M.; Caruso, F. “Nanotubes prepared by layer-by-layer coating of porous membrane templates” Adv. Mater. 2003, 15, 1849.
    連結:
  12. 12. Maclachlan, M. J.; Ginzburg, M.; Coombs, N.; Coyle, T. W. Raju, N. P.; Greedan, J. E.; Ozin,; Manners, I. “Shaped ceramics with tunable magnetic properties from metal-containing polymers” Science 2000, 287, 1460.
    連結:
  13. 13. Kim, F.; Song, J. H.; Yang, P. “Photochemical synthesis of gold nanorods” J. Am. Chem. Soc. 2002, 124, 14316.
    連結:
  14. 14. Chen, H. M.; Peng, H.-C.; Liu, R. S.; Asakura, K.; Lee, C.-L.; Lee, J.-F.; Hu, S. F. “Controlling the length and shape of gold nanorods” J. Phys. Chem. B 2005, 109, 19553.
    連結:
  15. 15. Jana, N. R. “Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles” Small 2005, 1, 875.
    連結:
  16. 16. Yang, X.; Wolcottt, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. “Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting” Nano Lett. 2009, 9, 2331.
    連結:
  17. 17. Hauq, H.; Koch, S. W. “Quantum theory of the optical and electronic properties of semiconductors” World Scientific: Singapore, 1994.
    連結:
  18. 18. Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. “(CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites” J. Phys. Chem. B 1997, 101, 9463.
    連結:
  19. 20. Baglio, V.; Stassi, A.; Matera, F. V.; Kim, H.; Antonucci, V.; Arico, A. S.“AC-impedance investigation of different MEA configurations for passive-mode DMFC mini-stack applications” Fuel Cells 2010, 10, 124.
    連結:
  20. 21. Schultz, T.; Zhou, S.; Sundmacher, K. “Current status of and recent developments in the direct methanol fuel cell” Chem. Eng. Technol. 2001, 24, 1223.
    連結:
  21. 22. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. “Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells” Science 2009, 324, 71.
    連結:
  22. 23. Yuan, X.; Zeng, X.; Zhang, H.-J.; Ma, Z.-F.; Wang, C.-Y. “Improved performance of proton exchange membrane fuel cells with p-toluenesulfonic acid-doped Co-PPy/C as cathode electrocatalyst” J. Am. Chem. Soc. 2010, 132, 1754.
    連結:
  23. 24. Choi, J.-Y.; Hsu, R. S.; Chen, Z. “Highly active porous carbon-supported nonprecious metal-N electrocatalyst for oxygen reduction reaction in PEM fuel cells” J. Phys. Chem. C 2010, 114, 8048.
    連結:
  24. 26. Li, Y.; Tang, L.; Li, J. “Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites” Electrochem. Commun. 2009, 11, 846.
    連結:
  25. 27. Seger, B.; Kamat, P. V. “Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells” J. Phys. Chem. C 2009, 113, 7990.
    連結:
  26. 28. Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L. “Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells” ACS NANO 2010, 4, 1321.
    連結:
  27. 29. Wang, X.; Li, X.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H.; Guo, J.; Dai, H. “N-doping of graphene through electrothermal reactions with ammonia” Science 2009, 324, 768.
    連結:
  28. 30. Zhang, K.; Yue, Q.; Chen, G.; Zhai, Y.; Wang, L.; Wang, H.; Zhao, J.; Liu, J.; Jia, J.; Li, H. “Effects of acid treatment of Pt-Ni alloy nanoparticles@graphene on the kinetics of the oxygen reduction reaction in aacidic and alkaline solutions” J. Phys. Chem. C. 2011, 115, 379.
    連結:
  29. 31. Delucchi, M. A. “Hydrogen fuel-cell vehicles” John Wiley & Sons, New York, 1992.
    連結:
  30. 32. Chen, P.; Wu, X. ; Lin, J. ; Tan, K. L. “High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures” Science 1999, 285, 91.
    連結:
  31. 35. Brown, H. C.; Brown, C. A. “New, Highly active metal catalysts for the hydrolysis of borohydride” J. Am. Chem. Soc. 1962, 84, 1493.
    連結:
  32. 36. Amendola, S. C.; Sharp-Goldman, S. L.; Janjua, M. S.; Kelly, M. T.; Petillo, P. J.; Binder, M. “An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst.” J. Power Source 2000, 85, 186.
    連結:
  33. 37. Kojima, Y.; Suzuki, K.; Kawai, Y. “Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO2” J. Power Source 2006, 155, 325.
    連結:
  34. 38. Yan, J.-M.; Zhang, X.-B.; Akita, T.; Haruta, M.; Xu, Q. “One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane” J. Am. Chem. Soc. 2010, 132, 5326.
    連結:
  35. 39. Wang, Y. P.; Wang, Y. J.; Ren, Q. L.; Li, L.; Song, D. W.; Liu, G.; Han, Y.; Yuan, H. T. “Ultrafine amorphous Co–Fe–B catalysts for the hydrolysis of NaBH4 solution to generate hydrogen for PEMFC” Fuel Cells 2010, 10, 132.
    連結:
  36. 40. Fhjishima, A.; Honda, K. “Electrochemical photolysis of water at a semiconductor electrode” Nature 1972, 238, 37.
    連結:
  37. 41. Kudo, A.; Miseki, Y. “Heterogeneous photocatalyst materials for water splitting” Chem. Rev. 2009, 38, 253.
    連結:
  38. 42. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. “Photoelectrocatalytic reduction of carbon-dioxide in aqueous suspensions of semiconductor powders” Nature 1978, 277, 637.
    連結:
  39. 43. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M. “Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: effects of the structure of the active sites and the addition of Pt” J. Phys. Chem. B 1997, 101, 2632.
    連結:
  40. 45. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst” Nature 2001, 414, 625.
    連結:
  41. 46. Kudo, A.; Kato, H. “Photocatalytic decomposition of water into H2 and O2 over novel photocatalyst K3Ta3Si2O13 with pillared structure consisting of three TaO6 chains” Chem. Lett. 1997, 867.
    連結:
  42. 47. Pan, P. W.; Chen, Y. W. “Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation” Catal. Commu. 2007, 8, 1546.
    連結:
  43. 48. Kato, H. ; Asakura, K. ; Kudo, A. “Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure” J. Am. Chem. Soc. 2003, 125, 3082.
    連結:
  44. 49. Chen, H. C.; Chou, H. C.; Wu, J. C. S.; Lin, H. Y. “Sol-gel prepared InTaO4 and its photocatalytic characteristics” J. Mater. Res. 2008, 23, 1364.
    連結:
  45. 1. Skoog, D. A.; Holler, F. J.; Nieman, T. A. “Principles of instrumental analysis” Saunders College: America, 1998.
    連結:
  46. 2. West, A. R. “Basic Solid State Chemistry” John Wiley & Sons: UK, 1999.
    連結:
  47. 5. Wang, Z. L. “Characterization of nanophase materials” John Wiley & Sons: New York, 2000.
    連結:
  48. 6. Williams, D. B.; Carter, C. B. “Transmission electron microscopy” Plenum: New York, 1996.
    連結:
  49. 7. Grant J. T.; Briggs, D. “Surface analysis by auger and X-ray photoelectron spectroscopy” IM Publications: UK, 2003.
    連結:
  50. 9. Iwasawa, Y. “X-ray absorption fine structure for catalysts and surfaces” World Scientific: Singapore, 1996.
    連結:
  51. 11. Rehr, J. J.; Albers, R. C. Rev. Mod. Phys. “Theoretical approaches to X-ray absorption fine structure” 2000, 72, 621.
    連結:
  52. 13. Wang, J. “Analytical electrochemistry” John Wiley & Sons: New York, 2000.
    連結:
  53. 14. Kakac, S.; Pramuanjaroenkij, A.; Zhou, X. Y. “A review of numerical modeling of solid oxide fuel cells” Int. J. Hydrogen Energy 2007, 32, 761.
    連結:
  54. 15. Harold, M. M.; James, M. M. “Basic gas chromatography” John Wiley & Sons: New Jersey, 2009.
    連結:
  55. 1. Mukerjee, S.; Srinivasan, S.; Soriaga, M.; Mcbreen, J. “Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction” J. Electrochem. Soc. 1995, 142, 1409.
    連結:
  56. 2. Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. “Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co” J. Electrochem. Soc. 1999, 146, 3750.
    連結:
  57. 3. Stamenkovic, V.; Schmidt, T. J.; Ross, P. N.; Markovic, N. M. J. “Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces” J. Phys Chem. B 2002, 106, 11970.
    連結:
  58. 4. Huang, J.; Liu, Z.; He, C.; Gan, L. M. “Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell” J. Phys Chem. B 2005, 109, 16644.
    連結:
  59. 5. Zhou, S.; Jackson, G. S.; Eichhorn, B. “AuPt alloy nanoparticles for CO-tolerant hydrogen activation: architectural effects in Au-Pt bimetallic nanocatalysts” Adv. Funct. Mater. 2007, 17, 3099.
    連結:
  60. 6. Raghuveer, V.; Manthiram, A.; Bard. A. J. “Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane Fuel Cells” J. Phys. Chem. B 2005, 109, 22909.
    連結:
  61. 7. Shao, M.-H.; Sasaki, K.; Azdic, R. R. “Pd-Fe nanoparticles as electrocatalysts for oxygen reduction” J. Am. Chem. Soc. 2006, 128, 3526.
    連結:
  62. 8. Lo, S. H. Y.; Chen, T. Y.; Wang, Y. Y.; Wan, C. C.; Lee, J.-F.; Lin, T. L. “A mechanism study on the synthesis of Cu/Pd nanoparticles with citric complexing agent” J. Phys. Chem. C Lett. 2007, 111, 12873.
    連結:
  63. 9. Suo, Y.; Zhang, L.; Lu, J. “First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction” Angew. Chem. Int. Ed. 2007, 46, 2862.
    連結:
  64. 10. Shao, M.; Liu, P.; Zhang, J.; Azdic, R. “Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction” J. Phys. Chem. B 2007, 111, 6772.
    連結:
  65. 11. Dicks, A. L. “The role of carbon in fuel cells” J. Power Sources 2006, 156, 128.
    連結:
  66. 12. McCreey, R. L. “Advanced carbon electrode materials for molecular electrochemistry” Chem. Rev. 2008, 108, 2646.
    連結:
  67. 13. Su, F.; Tian, Z.; Poh, C. K.; Wang, Z.; Lim, S. H.; Liu, Z.; Lin, J. “ Pt nanoparticles supported on nitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells” Chem. Mater. 2010, 22, 832.
    連結:
  68. 14. Maldonado, S. ; Stevenson, K. J. “Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes” J. Phys. Chem. B 2005, 109, 4707.
    連結:
  69. 15. Ikeda, T.; Boero, M.; Huang, S.-F.; Terakura, K.; Oshima, M.; Ozaki, J. “Carbon alloy catalysts: active sites for oxygen reduction reaction” J. Phys. Chem. C Lett. 2008, 112, 14706.
    連結:
  70. 16. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P. “Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells” Science 2009, 324, 71.
    連結:
  71. 18. Kinoshita, K. “Electrochemical oxygen technology” John Wiley & Sons, Inc., New York, 1992.
    連結:
  72. 20. Lee, K.; Zhang, L.; Lui, H.; Hui, R. ; Shi, Z. ; Zhang, J. “ Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts” Electrochim. Acta 2009, 54, 4704.
    連結:
  73. 21. Iwasawa, Y. “X-ray absorption fine structure for catalysts and surfaces” World Scientific: Singapore, 1996.
    連結:
  74. 22. Wang, W.; Zheng, D.; Du, C.; Zou, Z.; Zhang, X.; Xia, B.; Yang, H.; Akins, D. L. “Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction” J. Power Sources 2007, 167, 243.
    連結:
  75. 23. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M. “Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces” Nat. Mater. 2007, 6, 241.
    連結:
  76. 24. Gou, Y.-G.; Hu, J.-S.; Wan, L.-J. “Nanostructured materials for electrochemical energy conversion and storage devices” Adv. Mater. 2008, 20, 2878.
    連結:
  77. 25. Park, K.-W.; Sung, Y.-E. “Design of nanostructured electrocatalysts for direct methanol fuel cells” J. Ind. Eng. Chem. 2006, 12, 165.
    連結:
  78. 26. Travitsky, N; Ripenbein, T.; Golodnitsky, D.; Rosenberg, Y.; Burshtein, L.; Peled, E. “Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEM fuel cells” J. Power Sources 2006, 161, 782.
    連結:
  79. 28. Yuasa, M.; Oyaizu, K.; Murata, H.; Tanaka, K.; Yamamoto, M. “Improved activity of cathode catalysts for fuel cells by optimizing the conditions for preparation of carbon particles modified with cobalt-polypyrrole complex” Kobunshi Ronbunshu 2006, 63, 601.
    連結:
  80. 29. Yuasa, M.; Oyaizu, K.; Murata, H.; Tanaka, K.; Sasaki, S. “Electrocatalytic activities for the reduction of oxygen of carbon particles modified with polypyrrole including various metal ions as electrocatalytic sites” Electrochemistry 2007, 75, 800.
    連結:
  81. 30. Niwa, H.; Horiba, K.; Harada, Y.; Oshima, M.; Ikeda, T.; Terakura, K.; Ozaki, J.; Miyata, S. “X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells” J. Power Sources 2009, 187, 93.
    連結:
  82. 1. Winter, M; Brodd, R. J. “What are batteries, fuel cells, and supercapacitors?” Chem. Rev. 2004, 104, 4245.
    連結:
  83. 2. Kua, J.; Goddard, W. A. III “Oxidation of methanol on 2nd and 3rd row group VIII transition metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells” J. Am. Chem. Soc. 1999, 121, 10928.
    連結:
  84. 3. Liu, Z.; Ling, X. Y.; Guo, B.; Hong, L.; Lee, J. Y. “Pt and PtRu nanoparticles deposited on single-wall carbon nanotubes for methanol electro-oxidation” J. Power Sources 2007, 167, 272.
    連結:
  85. 4. Shao, M.-H.; Sasaki, K.; Adzic, R. R. “PdFe nanoparticles as electrocatalysts for oxygen reduction” J. Am. Chem. Soc. 2006, 128, 3526.
    連結:
  86. 5. Wang, W. M.; Huang, Q. H.; Liu, J.-Y. “Surface and structure characteristics of carbon-supported Pd3Pt1 bimetallic nanoparticles for methanol-tolerant oxygen reduction reaction” J. Catal. 2009, 266, 156.
    連結:
  87. 6. Shao, M.-H.; Liu, P.; Azdic, R. R. “Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction“ J. Phys. Chem. B 2007, 111, 6772.
    連結:
  88. 7. Yu, X.; Ye, S. “Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst“ J. Power Sources 2007, 172, 145.
    連結:
  89. 8. Gong, K.; Du, F.; Xia, Z.; Dustock, M.; Dai, L. “Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction“ Science 2009, 323, 760.
    連結:
  90. 9. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P. “Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells“ Science 2009, 324, 71.
    連結:
  91. 10. Choi, C. H.; Park, S. H.; Woo, S. I. “Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions“ Green Chem. 2011, 13, 406.
    連結:
  92. 11. Lee, K.; Zhang, L.; Lui, H.; Hui, R.; Shi, Z.; Zhang, J. “Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts“ Electrochim. Acta 2009, 54, 4704.
    連結:
  93. 12. Gewirth, A. A.; Thorum, M. S. “Electroreduction of dioxygen for fuel-cell applications: Materials and challenges“ Inorg. Chem. 49, 3557.
    連結:
  94. 13. Wu, G. ; More, K. L. ; Johnston, C. M.; Zelenay, P. “High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt“ Science 2011, 332, 443.
    連結:
  95. 14. Jasinski, R. “A new fuel cell cathode catalyst“ Nature 1964, 201, 1212.
    連結:
  96. 15. Koslowski, U. I.; Abs-Wurmbach, I.; Fiechter, S.; Bogdanoff, P. “Nature of the catalytic centers of porphyrin-based electrocatalysts for the ORR: A correlation of kinetic current density with the site density of Fe-N-4 centers“ J Phys. Chem. C 2008, 112, 15356.
    連結:
  97. 16. Lefèvre, M.; Dodelet, J.-P. ; Bertrand, P. “Molecular oxygen reduction in PEM fuel cells: Evidence for the simultaneous presence of two active sites in Fe-based catalysts“ J Phys. Chem. B 2002, 106, 8705.
    連結:
  98. 17. Scherson, D.; Tanaka, A. A.; Gupta, S. L.; Tryk, D. Fierro, C.; Holze, R.; Yeager, E. B. “Transition-metal macrocycles supported on higho area carbon-pyrolysis mass-spectrometry studies“ Electrochim. Acta 1986, 31, 1247.
    連結:
  99. 18. Gupta, S.; Tryk, D. Bae, I.; Aldred, W.; Yeager, E. “Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction“ J. Appl. Electrochem. 1989, 19, 19.
    連結:
  100. 21. Meng, X. B.; Geng, D. S.; Liu, J. A.; Banis, M. N.; Zhang, Y.; Li, R. Y.; Sun, X. L. “Non-aqueous approach to synthesize amorphous/crystalline metal oxide-graphene nanosheet hybrid composites“ J. Phys. Chem. C 2010, 114, 18330.
    連結:
  101. 22. Shao, Y. Y.; Wang, J.; Engelhard, M.; Wang, C. M.; Lin, Y. H. “Facile and controllable electrochemical reduction of graphene oxide and its applications“ J. Mater. Chem. 2010, 20, 743.
    連結:
  102. 23. Yoo, E.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. “Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface“ Nano Lett. 2009, 9, 2255.
    連結:
  103. 24. Subrahmanyam, K. S.; Vivekchand, S. R. C.; Govindaraj, A.; Rao, C. N. R. “A study of graphenes prepared by different methods: characterization, properties and solubilization“ J. Mater. Chem. 2008, 18, 1517.
    連結:
  104. 25. Srinivas, G.; Zhu, Y.; Piner, R.; Skipper, N.; Ellerby, M.; Ruoff, R. “Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity“ Carbon 2010, 48, 630.
    連結:
  105. 26. Geim, A. K.; Novoselov, K. S. “The rise of graphene“ Nat. Mater. 2007, 6, 183.
    連結:
  106. 27. Tang, L. H.; Wang, Y.; Li, Y. M.; Feng, H. B.; Lu, J.; Li, J. H. “Preparation, structure, and electrochemical properties of reduced graphene sheet films“ Adv. Funct. Mater. 2009, 19, 2782.
    連結:
  107. 28. Li, Y.; Tang, L.; Li, J. “Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites“ Electrochem. Commun. 2009, 11, 846.
    連結:
  108. 29. Seger, B.; Kamat, P. V. “Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells“ J. Phys. Chem. C 2009, 113, 7990.
    連結:
  109. 30. Chen, Z.; Higgins, D.; Tao, H. S.; Hsu, R. S.; Chen, Z. W. “Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell applications“ J. Phys. Chem. C 2009, 113, 21008.
    連結:
  110. 31. Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. “Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction“ Science 2009, 323, 760.
    連結:
  111. 32. Liu, R. L.; Wu, D. Q.; Feng, X. L.; Mullen, K. “Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction“ Angew. Chem., Int. Ed. 2010, 49, 2565.
    連結:
  112. 33. Li, X. L.; Wang, H. L.; Robinson, J. T.; Sanchez, H. ; Diankov, G.; Dai, H. J. “Simultaneous nitrogen doping and reduction of graphene oxide“ J. Am. Chem. Soc. 2009, 131, 15939.
    連結:
  113. 34. Lee, K. R.; Lee, K. U.; Lee, J. W.; Ahn, B. T.; Woo, S. I. “Electrochemical oxygen reduction on nitrogen doped graphene sheets in acid media“ Electrochem. Commmun. 2010, 12, 1052.
    連結:
  114. 35. Sun, Y.; Li, C.; Xu, Y.; Bai, H.; Yao, Z.; Shi, G. “Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst“ Chem. Commun. 2010, 46, 4740.
    連結:
  115. 36. Wu, G.; Li, D. Y.; Dai, C. S.; Wang, D. L.; Li, N. “Well-dispersed high-loading Pt nanoparticles supported by shell−core nanostructured carbon for methanol electrooxidation“ Langmuir 2008, 24, 3566.
    連結:
  116. 37. Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L. “Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells“ ACS NANO 2010, 4, 1321.
    連結:
  117. 38. Sidik, R. A.; Anderson, A. B.; Subramanian, N. P.; Kumaraguru,S. P.; Popov, B. N. “O2 reduction on graphite and nitrogen-doped graphite: Experiment and theory“ J. Phys. Chem. B 2006, 110, 1787.
    連結:
  118. 39. Ikeda, T.; Boero, M.; Huang, S.-F.; Terakura, K.; Oshima, M.; Ozaki, J. “Carbon alloy catalysts: Active sites for oxygen reduction reaction“ J. Phys. Chem. C 2008, 112, 14706.
    連結:
  119. 40. Kudashov, A. G.; Okotrub, A. V.; Bulusheva, L. G.; Asanov, I. P.; Shubin, Y. V.; Yudanov, N. F.; Yudanova, L. I.; Danilovich, V. S.; Abrosimov, O. G. “Influence of Ni-Co catalyst composition on nitrogen content in carbon nanotubes“ J. Phys. Chem. B 2004, 108, 9048.
    連結:
  120. 41. Griffith, A.; Glidle, A.; Beamson, G.; Cooper, J. M. “Determination of the biomolecular composition of an enzyme−polymer biosensor“ J. Phys. Chem. B 1997, 101, 2092.
    連結:
  121. 42. Su, F.; Tian, Z.; Poh, C. K.; Wang, Z.; Lim, S. H.; Liu, Z.; Lin, J. “Pt nanoparticles supported on nitrogen-doped porous carbon nanospheres as an electrocatalyst for fuel cells“ Chem. Mater. 2010, 22, 832.
    連結:
  122. 43. Hummers, W. S. J.; Offeman, R. E. “Preparation of graphitic oxide“ J. Am. Chem. Soc. 1958, 80, 1339.
    連結:
  123. 44. Iwasawa, Y. X-ray Absorption Fine Structure for Catalysts and Surfaces ; World Scientific: Singapore, 1996.
    連結:
  124. 45. Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. “Structure of graphite oxide revisited“ J. Phys. Chem. B 1998, 102, 4477.
    連結:
  125. 46. Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud`home, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. “Functionalized single graphene sheets derived from splitting graphite oxide“ J. Phys. Chem. B 2006, 110, 8535.
    連結:
  126. 47. Zhang, L.S.; Liang, X.-Q.; Song, W. G.; Wu, Z.-Y. “Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell“ Phys. Chem. Chem. Phys. 2010, 12, 12055.
    連結:
  127. 48. Paterson, N.; Zhou. Y.; Dugwell, D.; Kandiyoti, R. “Formation of hydrogen cyanide and ammonia during the gasification of sewage sludge and bituminous coal“ Energy & Fuels 2005, 19, 1016.
    連結:
  128. 49. Si, Y.; Samulski, E. T. “Synthesis of water soluble graphene“ Nano Lett. 2008, 8, 1679.
    連結:
  129. 50. Hu, Z.-L.; Aizawa, M.; Wang, Z.-M.; Yoshizawa, N.; Hatori, H. “Synthesis and characteristics of graphene oxide-derived carbon nanosheet−Pd nanosized particle composites“ Langmuir 2010, 26, 6681.
    連結:
  130. 51. Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. “Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets“ Carbon 2006, 44, 3342.
    連結:
  131. 52. Wang, Y. P.; Wang, Y. J.; Ren, Q. L.; Li, L.; Jiao, L. F.; Song, D. W.; Liu, G.; Han, Y.; Yuan, H. T. “Ultrafine amorphous Co-Fe-B catalysts for the hydrolysis of NaBH4 solution to generate hydrogen for PEMFC“ Fuel Cells 2010, 1, 132.
    連結:
  132. 53. Lyth, S. M.; Nabae, Y.; Moriya, S.; Kuroki, S.; Kakimoto, M.; Ozaki, J.; Miyata, S. “Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction“ J. Phys. Chem. C 2009, 113, 20148.
    連結:
  133. 54. Wang, G.; Wang, Bei; Wang, X.; Park, J.; Dou, S.; Ahn, H.; Kim, K. “Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries“ J. Mater. Chem. 2009, 19, 8378.
    連結:
  134. 55. Lian, P.; Zhu, X.; Liang, S.; Li, Z.; Yang, W.; Wang, H. “Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries“ Electrochim. Acta 2010, 55, 3909.
    連結:
  135. 57. Kuznetsova, A.; Popova, I.; Yates, J. T.; Bronikowski, M. J.; Huffman, C. B.; Liu, J. Smalley, R. E.; Hwu, H. H.; Chen, J. G. G. “Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies” J. Am. Chem. Soc. 2001, 123, 10699.
    連結:
  136. 59. Jeong, H. K.; Noh, H. J.; Kim, J. Y.; Jin, M. H.; Park, C. Y.; Lee, Y. H. “X-ray absorption spectroscopy of graphite oxide” Epl 2008, 82, 5.
    連結:
  137. 60. Yeh, Y.-C.; Chen, H. M.; Liu, R.-S.; Asakura, K.; Lo, M.-Y.; Peng Y.-M.; Chan, T.-S.; Lee, J.-F. “Pd−C−Fe nanoparticles investigated by X-ray absorption spectroscopy as electrocatalysts for oxygen reduction” Chem. Mater. 2009, 21, 4030.
    連結:
  138. 61. Travitsky, N; Ripenbein, T.; Golodnitsky, D.; Rosenberg, Y.; Burshtein, L.; Peled, E. “Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEM fuel cells” J. Power Sources 2006, 161, 782.
    連結:
  139. 62. Zelenay, P. 2010 Hydrogen Program Annual Merit Review and Peer Evaluation
    連結:
  140. 63. Jeong, H.-K.; Jin, M.; Ra, E. J.; Sheem, K. Y.; Han, G. H.; Arepalli, S.; Lee Y. H. “Enhanced electric double layer capacitance of graphite oxide intercalated by poly(sodium 4-styrensulfonate) with high cycle stability” ACS NANO 2010, 4, 1162.
    連結:
  141. 64. Kim, T.; Lim, S. Kwon, K.; Hong, S. H.; Qiao, W.; Rhee, C. K.; Yoon, S. H.; Mochida, I. “Electrochemical capacitances of well-defined carbon surfaces” Langmuir 2006, 22, 9086.
    連結:
  142. 65. Wang, C. H.; Du, H. Y.; Tsai, Y. T.; Chen, C. P.; Huang, C. J.; Chen, L. C.; Chen, K. H.; Shih, H. C. “High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC” J. Power Sources 2007, 171, 55.
    連結:
  143. 66. Jia, R. L.; Wang, C. Y.; Wang, S. M. “Preparation of carbon supported platinum catalysts: role of pi sites on carbon support surface” J. Mater. Sci. 2006, 41, 6881.
    連結:
  144. 67. Jafri, R. I.; Rajalashmi, N.; Ramaprabhu, S. “Nitrogen doped graphene nanoplatelets as catalyst support for oxygenreduction reaction in proton exchange membrane fuel cell” J. Mater. Chem. 2010, 20, 7114.
    連結:
  145. 1. Suzuki, Y.“ On hydrogen as fuel gas” Int. J. Hydrogen Energy 1982, 7, 227.
    連結:
  146. 2. Grochala, W.; Edwards, P. P. “Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen” Chem. Rev. 2004, 104, 1283.
    連結:
  147. 3. Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. “Interaction of hydrogen with metal nitrides and imides” Nature 2002, 420, 302.
    連結:
  148. 4. Schlapbach, L.; Zuttel, A. “Hydrogen-storage materials for mobile applications” Nature 2001, 414, 353.
    連結:
  149. 5. Ogden, J. M. “Prospects for building a hydrogen energy infrastructure” Annu. Rev. Energy Environ. 1999, 24, 227.
    連結:
  150. 6. Ogston, J. M.; Kreutz, T. G.; Steinbugler, M. M. “A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: Implications for vehicle design and infrastructured development” J. Power Source 2000, 3, 5.
    連結:
  151. 7. Bockris, J. O. M. “The economics of hydrogen as a fuel” Int. J. Hydrogen Energy 1981, 6, 223.
    連結:
  152. 8. Ogden, J. M. “ Prospects for building a hydrogen energy infrastructure” Annu. Rev. Energ. Env. 1999, 24, 227.
    連結:
  153. 9. Chen, P.; Wu, X.; Lin, J.; Tan, K. L.“ High H-2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures” Science 1999, 285, 91.
    連結:
  154. 10. Liao, B.; Lei, Y. Q.; Chen, L. X. “Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3−xNi9 (x=1.6–2.2) hydrogen storage electrode alloys for nickel–metal hydride batteries” J. Power Source 2004, 129, 358.
    連結:
  155. 11. Song, M. Y.; Ahn, D.; Kwon, I. H.; Chough, S. H. “Development of AB(2)-type Zr-Ti-Mn-V-Ni-M hydride electrode for Ni-MH secondary battery” J. Electrochem. Soc. 2001, 148, A1041.
    連結:
  156. 12. Yukawa, H.; Takahashi, Y.; Morinaga, M. “Electronic structures of hydrogen storage compound, TiFe” Comput. Mater. Sci. 1999, 14, 291.
    連結:
  157. 13. Tian, Q. F.; Zhang, Y.; Sun, L. X. Xu, F.; Tan, Z. C.; Yuan, H. T. “Effects of Pd substitution on the electrochemical properties of Mg0.9−xTi0.1PdxNi (x = 0.04–0.1) hydrogen storage alloys” J. Power Source 2006, 158, 1463.
    連結:
  158. 14. Kojima, Y.; Suzuki, K.; Kawai, Y. “Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO2” J. Power Sources 2006, 155, 325.
    連結:
  159. 15. Kong, V.; Foulkes, C. Y.; Lirk, F. R.; Hinatsu, D. W.“Development of hydrogen storage for fuel cellgenerators. i: Hydrogen generation using hydrolysishydrides” Int. J. Hydrogen Energy 1999, 24, 665.
    連結:
  160. 16. Schlesinger, H. I.; Brown, H. C.; Finholt, A. E.; Gilbreath, J. R.; Hoekstra, H. R.; Hyde, E. K. “Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen” J. Am. Chem. Soc. 1953, 75, 215.
    連結:
  161. 18. Amendola, S. C.; Sharp-Goldman, S. L.; Janjua, M. S.; Spencer, N. C.; Kelley, M. T.; Petillo, P. J.; Binder, M. “A Safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst” Int. J. Hydrogen Energy 2000, 25 969.
    連結:
  162. 19. Kim, J.-H.; Lee, H.; Han, S.-C.; Kim, H.-S.; Song, M.-S.; Lee, J.-Y. “Production of hydrogen from sodium borohydride in alkaline solution: Development of catalyst with high performance” Int. J. Hydrogen Energy 2004, 29 263.
    連結:
  163. 20. Amendola, S.; Onnerud, P.; Kelley, M. T.; Binder, M. “Inexpensive, in-situ monitoring of borohydride concentrations” Talanta 1999, 49, 267.
    連結:
  164. 21. Liu, Z. L.; Guo, B.; Chan, S. H.; Tang, E. H.; Hong, L. “Pt and Ru dispersed on LiCoO2 for hydrogen generation from sodium borohydride solutions” J. Power Sources 2008, 176, 306.
    連結:
  165. 22. Yao, C. F.; Zhuang, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. “Hydrogen release from hydrolysis of borane on Pt- and Ni-based alloy catalysts” Int. J. Hydrogen Energy 2008, 33, 2462.
    連結:
  166. 24. Yan, J.-M.; Zhang, X.-B.; Akita, T.; Haruta, M.; Xu, Q. “Synthesis of mono-ADP-ribosylated oligopeptides using ribosylated amino acid building blocks” J. Am. Chem. Soc. 2010, 132, 5236.
    連結:
  167. 25. Zhao, J. Z.; Ma, H.; Chen, J. “Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co–B as catalysts” Int. J. Hydrogen Energy 2007, 32, 4711.
    連結:
  168. 26. Guella, G.; Patton, B.; Miotello, A. “Kinetic features of the platinum catalyzed hydrolysis of sodium borohydride from 11B NMR measurements” J. Phys. Chem. C 2007, 111, 18744.
    連結:
  169. 27. Xu, D. Y.; Dai, P.; Liu, X. M.; Cao, C. Q.; Guo, Q. J. “Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution” J. Power Sources 2008, 182, 616.
    連結:
  170. 28. Walter, J. C.; Zurawski, A.; Montgomery, D.; Thornburg, M.; Revankar, S. “Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts” J. Power Sources 2008, 179, 335.
    連結:
  171. 29. Eom, K.; Cho, K.; Kwon, H. “Effects of electroless deposition conditions on microstructures of cobalt–phosphorous catalysts and their hydrogen generation properties in alkaline sodium borohydride solution” J. Power Sources 2008, 180, 484.
    連結:
  172. 30. Wang, Y. P.; Wang, Y. J.; Ren, Q. L.; Li, L.; Jiao, L. F.; Somg, D. W.; Liu, G., Han, Y.; Yuan, H. T. “Ultrafine amorphous Co-Fe-B catalysts for the hydrolysis of NaBH4 solution to generate hydrogen for PEMFC”Fuel Cells 2010, 1, 132.
    連結:
  173. 31. Liu, R. S.; Lai, H. C.; Bagkar, N. C.; Kuo, H. T.; Chen, H. M.; Lee, J. F.; Chung, H. J.; Chang, S. M.; Weng, B. J. “Investigation on mechanism of catalysis by Pt−LiCoO2 for hydrolysis of sodium borohydride using X-ray absorption” J. Phys. Chem. B 2008, 112, 4870.
    連結:
  174. 1. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders” Nature 1979, 277, 637.
    連結:
  175. 2. Kuwabata, S.; Nishida, K.; Tsuda, R.; Inoue, H.; Yoneyama, H. “Photochemical reduction of carbon dioxide to methanol using ZnS microcrystallite as a photocatalyst in the presence of methanol dehydrogenase”J. Electrochem. Soc. 1994, 141, 1498.
    連結:
  176. 3. Matsumoto, Y.; Obata, M.; Hombo, J. “Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder” J. Phys. Chem. 1994, 98, 2950.
    連結:
  177. 4. Yoneyama, H. “Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution” Catal. Today 1997, 39, 169.
    連結:
  178. 5. Barton, E. E.; Rampulla, D. M.; Bocarsly, A. B. “Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell” J. Am. Chem. Soc. 2008, 130, 6342.
    連結:
  179. 6. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M. “Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt” J. Phys. Chem. B 1997, 101, 2632.
    連結:
  180. 7. Anpo, M.; Yamashita, H.; Ikeue, K.; Fujii, Y.; Zhang, S. G.; Ichihashi, Y.; Park, D. R.; Suzuki, Y.; Koyano, K.; Tatsumi, T. “Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts” Catal. Today 1998, 44, 327.
    連結:
  181. 8. Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. “Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves” Catal. Today 1998, 45, 221.
    連結:
  182. 9. Ulagappan, N.; Frei, H. “Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy” J. Phys. Chem. A 2000, 104, 7834.
    連結:
  183. 10. Ikeue, K.; Yamashita, H.; Anpo, M.; Takewaki, T. “Photocatalytic reduction of CO2 with H2O on Ti−β zeolite photocatalysts: Effect of the hydrophobic and hydrophilic properties” J. Phys. Chem. B 2001, 105, 8350.
    連結:
  184. 11. Ikeue, K.; Nozaki, S.; Ogawa, M.; Anpo, M. “Photocatalytic reduction of CO2 with H2O on Ti-containing porous silica thin film photocatalysts” Catal. Lett. 2002, 80. 600.
    連結:
  185. 12. Keita, I.; Nozaki, S.; Ogawa, M.; Anpo, M. “Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O” Catal. Today 2002, 74, 5861.
    連結:
  186. 14. Hwang, J. S.; Chang, J. S.; Park, S. E.; Ikeue, K.; Anpo, M. “Photoreduction of carbondioxide on surface functionalized nanoporous catalysts” Topics Catal. 2005, 35, 311.
    連結:
  187. 15. Solymosi, F.; Tombacz, I. “Photocatalytic reaction of H2O + CO2 over pure and doped Rh/TiO2” Catal. Lett. 1994, 27, 61.
    連結:
  188. 16. Guan, G. Q.; Kida, T.; Harada, T.; Isayama, M.; Yoshida, A. “Photoreduction of carbon dioxide with water over K2Ti6O13 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight” Appl. Catal. A: Gen. 2003, 249, 11.
    連結:
  189. 17. Guan, G. Q.; Kida, T.; Yoshida, A. “Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst” Appl. Catal. B: Environ 2003, 41, 3373.
    連結:
  190. 18. Tseng, I. H.; Wu, J. C. S.; Chou, H. Y. “Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction” J. Catal. 2004, 221, 432.
    連結:
  191. 19. Wu, J. C. S.; Lin, H. M. “Photoreduction of CO2 to methanol via TiO2 photocatalys” Int. J. Photo. 2005, 7, 115.
    連結:
  192. 20. Pan, P. W.; Chen, Y. W. “Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation” Catal. Comm. 2007, 8, 1546.
    連結:
  193. 21. Chen, H.-C. ; Chou, H.-C.; Wu, J. C. S. “Sol-gel prepared InTaO4 and its photocatalytic characteristics” J. Mater. Res. 2008, 23, 1364.
    連結:
  194. 22. Kudo, A.; Kato, H. “Photocatalytic decomposition of water into H2 and O2 over novel photocatalyst K3Ta3Si2O13 with pillared structure consisting of three TaO6 chains” Chem. Lett. 1997, 867.
    連結:
  195. 23. Zou, Z.; Ye, J.; Arakawa, H. “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst” Chem. Phys. Lett. 2000, 332, 271.
    連結:
  196. 24. Abe, R.; Takata, T.; Sugihara, H.; Domen, K. “Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator” Chem. Commun. 2005, 3829.
    連結:
  197. 25. Kudo, A.; Sayama, K.; Tanaka. A; Asakura, K.; Domen, K.; Maruya, K.; Onishi, T. “Nickel-Loaded K4Nb6O17 photocatalyst in the decomposition of H2O into H2 and O2: Structure and reaction mechanism” J. Catal. 1989, 120, 337.
    連結:
  198. 26. Kim, H. G.; Hwang, D. W.; Kim, J.; Kim, Y. G.; Lee, J. S. “Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting” Chem. Commun. 1999, 1077.
    連結:
  199. 27. Kato, H.; Kudo, A. “Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts” Catal. Today 2003, 78, 561.
    連結:
  200. 29. Iwasawa, Y. “X-ray absorption fine structure for catalysts and surfaces” : World Scientific: Singapore, 1996.
    連結:
  201. 30. Li, X.; Kikugawa, N.; Ye, J. “Nitrogen-doped lamellar niobic acid with visible light-responsive photocatalytic activity” Adv. Mater. 2008, 20, 3816.
    連結:
  202. 31. Higashi, M.; Abe, R.; Takata, T.; Domen, K. “Photocatalytic overall water splitting under visible light using ATaO2N (A = Ca, Sr, Ba) and WO3 in a IO3−/I− shuttle redox mediated system” Chem. Mater. 2009, 21, 1543.
    連結:
  203. 32. Liu, G.; Wang, L.; Sun, C.; Yan, X.; Wang, X.; Chen, Z.; Smith, S. C.; Cheng, H.-M.; Lu, G. Q. “Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates” Chem. Mater. 2009, 21, 1266.
    連結:
  204. 33. Liu, G.; Wang, L.; Yang, H. G.; Cheng, H.-M.; Lu, G. Q. “Titania-based photocatalysts—crystal growth, doping and heterostructuring” J. Mater. Chem. 2010, 20, 831.
    連結:
  205. 34. Liu, G.; Niu, P.; Sun, C.; Smith, S. C.; Chen, Z.; Lu, G. Q.; Chen, H.-M. “Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4” J. Am. Chem. Soc. 2010, 132, 11642.
    連結:
  206. 36. Nakamura, R.; Tanaka, T.; Nakato, Y. “Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes” J. Phys. Chem. B 2004, 108, 10617.
    連結:
  207. 37. Maeda, K.; Domen, K. “New non-oxide photocatalysts designed for overall water splitting under visible light” J. Phys. Chem. C 2007, 111, 7851.
    連結:
  208. 38. Chen, X.; Mao, S. S. “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications” Chem. Rev. 2007, 107, 2891.
    連結:
  209. 39. Mukerjee, S.; Srinivasan, S.; Soriaga M. P.; McBreen J. “Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction - XRD, XAS, and electrochemical studies” J. Phys. Chem. 1995, 99, 4577.
    連結:
  210. References
  211. 1. Ozin, G. A.; Arsenault, A. C. “Nanochemistry” Royal Society of Chemistry: Cambridge, 2005.
  212. 19. http://www.geni.org/globalenergy/library/technical-articles/generation/title-page-images/fuelcell.jpg
  213. 25. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. “Electric field effect in atomically thin carbon films” Science 2004, 306, 666.
  214. 33. Pebler, A.; Gulbrans, E. “Thermochemical and structural aspect of reaction of hydrogen with alloys and intermetallic compounds of zirconium” Electrochem. Tech. 1966, 4, 211.
  215. 34. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/images/storage_graph.gif
  216. 44. http://www.photobiology.info/Visser-Rolinski_files/Fig1.png
  217. Chapter 2
  218. References
  219. 3. http://www.bruker-axs.de/fileadmin/user_upload/xrfintro/images/Abb14_e.jpg
  220. 4. Stokes, D. J. “Principles and practices of variable pressure/ environmental scanning electron microscopy” John Wiley & Sons: UK, 2008.
  221. 8. http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
  222. 10. Koningsberger, D. C.; Prins, R. “X-ray Absorption” John Wiley & Sons: New York, 1988.
  223. 12. http://www.dragon.lv/exafs/xas/slide2.jpg
  224. 16. http://en.wikipedia.org/wiki/File:IR_spectroscopy_apparatus.svg
  225. 17. http://www.ptli.com/testlopedia/images/FTIR-atomic-vibrations.jpg
  226. 18. http://en.wikipedia.org/wiki/File:Raman_energy_levels.svg
  227. 19. http://lane.unl.edu/project/Kaijun_Nano-Raman-System.jpg
  228. Chapter 3
  229. 3.1
  230. References
  231. 17. (a) Penner-Hahn, J. E. “X-ray absorption spectroscopy in coordination chemistry” Coord. Chem. Rev. 1999, 190, 1101. (b) Chen, H. M.; Liu, R.-S.; Asakura, K.; Jang, L.-Y.; Lee, J.-F. “Controlling length of gold nanowires with large-scale: X-ray absorption spectroscopy approaches to the growth process” J. Phys. Chem. C 2007, 111, 18550. (c) Lee, W.-R.; Kim, M. G.; Choi, J.-R.; Park, J.-I.; Ko, S. J.; Oh, S. J.; Cheon, J. “Redox−transmetalation process as a generalized synthetic strategy for core−shell magnetic nanoparticles” J. Am. Chem. Soc. 2005, 127, 16090. (d) Polarz, S.; Neues, F.; van den Berg, M. W. E.; Grunert, W.; Khodeir, L. “Redox−transmetalation process as a generalized synthetic strategy for core−shell magnetic nanoparticles” J. Am. Chem. Soc. 2005, 127, 12028. (e) Jensen, M. P.; Dzielawa, J. A.; Rickert, P.; Dietz, M. L“ EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid” J. Am. Chem. Soc. 2002, 124, 10664. (f) Chen, H. M.; Hsin, C. F.; Liu, R.-S.; Lee, J.-F.; Jang, L.-Y. “Synthesis and characterization of multi-pod-shaped gold/silver nanostructures” J. Phys. Chem. C 2007, 111, 5909. (g) Yeh, Y.-C.; Chen, H. M.; Liu, R.-S.; Asakura, K.; Lo, M.-Y.; Peng Y.-M.; Chan, T.-S.; Lee, J.-F. “Pd−C−Fe nanoparticles investigated by X-ray absorption spectroscopy as electrocatalysts for oxygen reduction” Chem. Mater. 2009, 21, 4030. (h) Chen, H. M.; Hsin, C. F.; Chen, P. Y.; Liu, R.-S.; Hu, S.-F.; Huang, C.-Y.; Lee, J.-F; Jang, L.-Y. “Ferromagnetic CoPt3 nanowires: Structural evolution from fcc to ordered L12” J. Am. Chem. Soc. 2009, 131, 15794.
  232. 19. Lipkowski, J.; Ross, P. N. Electrocatalysis, Wiley-VCH, New York, 1998, Chapter 5.
  233. 27. Bard, A. J.; Faulkner, L.R. “Electrochemical Methods: Fundamentals and Applications, 2nd ed ”, John Wiley & Sons, New York, 2001, Chapters 3 and 9.
  234. 3.2
  235. References
  236. 19. Novoselov, K. S. ; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. “Electric field effect in atomically thin carbon films“ Science 2004, 306, 666.
  237. 20. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. “Preparation and characterization of graphene oxide paper“ Nature 2007, 448, 457.
  238. 56. (a) Penner-Hahn, J. E. “X-ray absorption spectroscopy in coordination chemistry” Coord. Chem. Rev. 1999, 190, 1101. (b) Chen, H. M.; Liu, R.-S.; Asakura, K.; Jang, L.-Y.; Lee, J.-F. “Controlling length of gold nanowires with large-scale: X-ray absorption spectroscopy approaches to the growth process” J. Phys. Chem. C 2007, 111, 18550. (c) Lee, W.-R.; Kim, M. G.; Choi, J.-R.; Park, J.-I.; Ko, S. J.; Oh, S. J.; Cheon, J. “Redox−transmetalation process as a generalized synthetic strategy for core−shell magnetic nanoparticles” J. Am. Chem. Soc. 2005, 127, 16090. (d) Polarz, S.; Neues, F.; van den Berg, M. W. E.; Grunert, W.; Khodeir, L. “Redox−transmetalation process as a generalized synthetic strategy for core−shell magnetic nanoparticles” J. Am. Chem. Soc. 2005, 127, 12028. (e) Jensen, M. P.; Dzielawa, J. A.; Rickert, P.; Dietz, M. L“ EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic liquid” J. Am. Chem. Soc. 2002, 124, 10664. (f) Chen, H. M.; Hsin, C. F.; Liu, R.-S.; Lee, J.-F.; Jang, L.-Y. “Synthesis and characterization of multi-pod-shaped gold/silver nanostructures” J. Phys. Chem. C 2007, 111, 5909. (g) Chen, H. M.; Hsin, C. F.; Chen, P. Y.; Liu, R.-S.; Hu, S.-F.; Huang, C.-Y.; Lee, J.-F; Jang, L.-Y. “Ferromagnetic CoPt3 nanowires: Structural evolution from fcc to ordered L12” J. Am. Chem. Soc. 2009, 131, 15794.
  239. 58. Banerjee, S. Hemraj-Benny, T.; Balasubramanian, M.; Huffman, C. B.; Fischer, D. A. Misewich, J. A.; Wong, S. S. “Ozonized single-walled carbon nanotubes investigated using NEXAFS spectroscopy” Chem. Commun. 2004, 772.
  240. Meeting(http://www.hydrogen.energy.gov/pdfs/review10/fc005_zelenay_2010_o_web.pdf)
  241. 68. Bard, A. J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley & Sons, New York, 2001, Chapters 3 and 9.
  242. 3.3
  243. Reference
  244. 17. Amendola, S. C.; Ortega, J. V.; Wu, Y. “Processes for synthesizing borohydride compounds” (Milleneium Cell, Inc., Eatontown, NJ). U.S. Patent 6,670,444, 2003.
  245. 23. (a) Alayoglu, S.; Zavalij, P.; Eichhorn, B.; Wang, Q.; Frenkel, A. I.; Chupas, P. “Structural and architectural evaluation of bimetallic nanoparticles: A case study of Pt-Ru core-shell and alloy nanoparticles” ACS Nano 2009, 3, 3127. (b) Kamat, P. V. “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles” J. Phys. Chem. B 2002, 106, 7729. (c) Chen, S.; Yang, Y. “Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging” J. Am. Chem. Soc. 2002, 124, 5280. (d) Alayoglu, S.; Nilekar, A. U.;Mavrikakis, M.; Eichhorn, B. “Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen” Nat. Mater. 2008, 7, 333. (e) Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. “Scanometric DNA array detection with nanoparticle probes” Science 2000, 289, 1757. (f) Scott, R. W. J.; Wilson, O. M.; Oh, S. K.; Kenik, E. A.; Crooks, R. M “Bimetallic palladium−gold dendrimer-encapsulated catalysts.” J. Am. Chem. Soc. 2004, 126, 15583. (g) Mandal, S.; Selvakannan, P. R.; Pasricha, R.; Sastry, M. “Keggin ions as UV-switchable reducing agents in the synthesis of Au core−Ag shell nanoparticles” J. Am. Chem. Soc. 2003, 125, 8440.
  246. Chapter 4
  247. 4.1
  248. References
  249. 13. Yamashita, H.; Ikeue, K.; Takewaki, T.; Anpo, M. “In-situ XAFS studies on the effects of the hydrophobic-hydrophilic properties of Ti-beta zeolites in the photocatalytic reduction of CO2 with H2O” Topics Catal. 2002, 18, 95.
  250. 28. (a) Penner-Hahn, J. E. “X-ray absorption spectroscopy in coordination chemistry” Coord. Chem. Rev. 1999, 190, 1101. (b) Chen, H. M.; Liu, R.-S.; Asakura, K.; Jang, L.-Y.; Lee, J.-F. “Controlling length of gold nanowires with large-scale: X-ray absorption spectroscopy approaches to the growth process” J. Phys. Chem. C 2007, 111, 18550. (c) Lee, W.-R.; Kim, M. G.; Choi, J.-R.; Park, J.-I.; Ko, S. J.; Oh, S. J.; Cheon, J. “Redox−transmetalation process as a generalized synthetic strategy for core−shell magnetic nanoparticles” J. Am. Chem. Soc. 2005, 127, 16090. (d) Polarz, S.; Neues, F.; van den Berg, M. W. E.; Grunert, W.; Khodeir, L.“Mesosynthesis of ZnO−slica composites for methanol nanocatal” J. Am. Chem. Soc. 2005, 127, 12028. (e) Jensen, M. P.; Dzielawa, J. A.; Rickert, P.; Dietz, M. L “ EXAFS investigations of the mechanism of facilitated ion transfer into a room-temperature ionic Liquid” J. Am. Chem. Soc. 2002, 124, 10664. (f) Chen, H. M.; Hsin, C. F.; Liu, R.-S.; Lee, J.-F.; Jang, L.-Y. “Synthesis and characterization of multi-pod-shaped gold/silver nanostructures” J. Phys. Chem. C 2007, 111, 5909. (g) Yeh, Y.-C.; Chen, H. M.; Liu, R.-S.; Asakura, K.; Lo, M.-Y.; Peng Y.-M.; Chan, T.-S.; Lee, J.-F. “Pd−C−Fe nanoparticles investigated by X-ray absorption spectroscopy as electrocatalysts for oxygen reduction” Chem. Mater. 2009, 21, 4030. (h) Chen, H. M.; Hsin, C. F.; Chen, P. Y.; Liu, R.-S.; Hu, S.-F.; Huang, C.-Y.; Lee, J.-F; Jang, L.-Y. “Ferromagnetic CoPt3 nanowires: structural evolution from fcc to ordered L12” J. Am. Chem. Soc. 2009, 131, 15794.
  251. 35. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.