Title

二氧化鈦奈米管應用於鈦基材之染敏太陽能電池

Translated Titles

Application of TiO2 Nanotubes to Ti–based Dye–sensitized Solar Cells

DOI

10.6342/NTU.2013.00699

Authors

陳韋潔

Key Words

背面照光 ; 染料敏化太陽能電池 ; 雙壁 ; 可撓 ; 鈦板 ; 二氧化鈦奈米管 ; Back illumination ; Dye–sensitized solar cells ; Double wall ; Flexible ; Titanium foil ; Titanium dioxide nanotubes

PublicationName

臺灣大學化學工程學研究所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

何國川

Content Language

英文

Chinese Abstract

本論文主要分為三議題,在第三章和第四章中,不僅將二氧化鈦奈米管應用於以鈦板為光電極基材之可撓式背面照光染料敏化太陽能電池,更於第五章中應用二氧化鈦奈米管於以鈦板為對電極基材之可撓式正面照光染料敏化太陽能電池。其主要目的在工作電極及對電極中引進新材料並提升染敏太陽能電池之效能。 在第三章和第四章探將二氧化鈦奈米管應用於以鈦板為光電極基材之可撓式背面照光染料敏化太陽能電池。此時的速率決定步驟在於工作電極的部分,在固定對電極下,工作電極就是我們的變因;因此改變工作電極參數即對整體效率有所改變。由於電子於一維結構之二氧化鈦奈米管中具有較高傳輸能力及較低再結合發生機率,此結構在近幾年來被廣泛探討,但相較於二氧化鈦奈米粒子具有較低表面積之缺點而限制其應用範圍。因此,在第三章中首次採用雙壁二氧化鈦奈米管做為染敏之光陽極的新材料,利用此一維和雙壁的結構的來加速電子傳輸和增加其表面積讓染料吸附;而此雙壁二氧化鈦奈米管的成長機制也在此研究中提出。以雙壁二氧化鈦奈米管光電極所製備之元件效能可達到6.85%的光電轉換效率,高於以一般二氧化鈦奈米管製備光電極之染敏元件效能(4.63%)。 除了在上述所提及的二氧化鈦奈米管光電極,二氧化鈦奈米管也應用於以二氧化鈦奈米粒子光電極之染敏太陽能電池於第四章中。二氧化鈦奈米粒子的隨機分布使其於粒子間有晶界效應,而降低其電子傳輸速率及增加再結合的機率。在此章節中,利用具有二氧化鈦奈米管印記之鈦板作為光電極基材讓二氧化鈦奈米粒子沉積於其上,其中,利用超音波震盪移除鈦板上之二氧化鈦奈米管後即可形成具有二氧化鈦奈米管印記的鈦板。由於此結構可增加二氧化鈦奈米粒子和有印記之鈦板基材間的電子接觸,所以可降低其電子再結合的機率,進而增加電子壽命及電子收集效率。此外,利用具有印記之鈦板比起一般無印記之鈦板有較高的表面積使更多二氧化鈦奈米粒子沉積於其上,進而增加其染料吸附量。以此具有印記之鈦板所製備之元件光電轉換效率可達7.05%,高於以無印記之一般鈦板所製備之元件光電轉換效率(3.96%)。 傳統上,研究學者以陽極蝕刻法於鈦板表面製備二氧化鈦奈米管並應用於光電極。然而,對於可撓式染料敏化太陽能電池,不僅是如前幾章提到的可撓式光電極重要,可撓式對電極也是不可或缺的要素。因此在第五章中,引進poly (ethylenedioxythiophene) (PEDOT) 和二氧化鈦奈米管的複合新結構並應用於染敏太陽能電池之可撓式對電極中。在做對電極的研究時,此時的速率決定步驟在於對電極的部分,在固定工作電極下,對電極就是我們的變因;因此改變對電極參數即對整體效率有所改變。在此複合結構中,二氧化鈦奈米管扮演了重要角色,包括:相較於一般平坦的PEDOT有較高的活性催化面積、由於其一維結構可加速電子在對電極中的傳輸、由於二氧化鈦奈米管的支撐可防止PEDOT在此厚的膜厚下不會垮,並進而縮短對電極和電解質的距離而加速電子的傳導。同時,在此章節也最適化PEDOT在二氧化鈦奈米管上的電量。以PEDOT 和二氧化鈦奈米管的複合結構所製備之對電極其光電轉換效率可高達8.82%,高於以一般平坦的PEDOT所製備之元件光電轉換效率(6.50%),甚至也高於以白金所製備之元件效率(8.24%)。所以此PEDOT 和二氧化鈦奈米管的複合結構具有潛力取代以白金製備之染敏太陽能電池的對電極材料,可降低成本並提高染敏太陽能電池之效能。

English Abstract

There are three main topics covered in this thesis, namely, applying TiO2 nanotubes (TNTs) to not only the Ti–based working electrodes (WEs) for back–illuminated dye–sensitized solar cells (DSSCs) as discussed in Chapter 3 and 4, but also the Ti–based counter electrodes (CEs) for front–illuminated DSSCs, studied in Chapter 5. The main purpose of this dissertation is to investigate the new approaches in the WEs and CEs and improve the cell performance of Ti–based DSSCs.Application of TNTs to the WEs of Ti–based DSSCs is studied in Chapter 3 and 4. In these chapters, the rate determining step is the WE of the DSSCs. Constant the CE and only differ in the WE; therefore, once change the parameters of the WE, it is prone to influence the performance of the DSSC. One–dimensional TNTs were widely used in the recent years because it exhibits better electron transportation and can reduce the loss of electrons by recombination. However, its smaller surface area limits its application as compared to that of TiO2 particles (TNPs). Therefore, a new strategy was adopted in Chapter 3, in which double–wall TiO2 nanotubes (DWTNTs) were used as the photoanode of DSSCs for the first time, in order to to obtain the advantages of fast electron transfer and high surface area for dye adsorption due to their one–dimensional double–wall tubular morphology. In addition, the comprehensive growth mechanism of the DWTNTs was also studied. The DSSC with DWTNTs as WE exhibited the best η of 6.85% with compared to that of the cell with bare TNTs (η = 4.63%).TNTs applied to not only the TNTs–based photoanodes as studied above, but also the TNPs–based photoanode were investigated in Chapter 4. TNPs are usually distributed randomly and have grain boundary effects, leading to limit the electron transport through the particles as well as increasing the probability of recombination. In this chapter, the imprints of TNTs were utilized by first fabricating TNTs on Ti foils by anodization and removing TNTs completely from Ti foils by ultrasonically vibration. The resulting imprinted–Ti foils were applied as the working substrates for photoanodes of DSSCs with the coating of TNPs on them. Due to the enhancement of electrical contact between the TNPs and the imprinted–Ti foils, the probabilities of recombination can be reduced so as to prolong the electron lifetime (τe) and enhance the charge collection efficiency (ηcc). Moreover, it shows higher surface area for dye adsorption for the DSSC with imprinted–Ti foils as working substrate than that of the cell with bare Ti foils. The η of the pertinent DSSC was improved to 7.05% with compared to that 3.96% for the cell with TNPs–coated bare Ti foil.Traditionally, the Ti foils are anodized for preparing TNTs and applied in a photoanode of DSSCs. However, not only a flexible WE but a flexible CE is indispensable to obtain a flexible DSSC. In Chapter 5, a new strategy is presented to fabricate a flexible CE with the hybrid structure of PEDOT and TNTs (PEDOT/TNTs) on Ti foils. In this chapter, the rate determining step is the CE of the DSSCs. Constant the WE and only differ in the CE; therefore, once change the parameters of the CE, it is prone to influence the performance of the DSSC. TNTs in PEDOT/TNTs plays an important role of providing larger active surface area compared to flat PEDOT, improving charge transfer at CEs due to its one–dimensional structures, also avoiding the collapse of thicker PEDOT films with TNTs supporting, and shortening the distance between CE and the electrolyte. The optimization of amount of PEDOT deposited onto to TNTs was also studied at the same time. A high η of 8.82% was obtained for the DSSC with PEDOT/TNTs as CE, which is much better than flat PEDOT (η= 6.50%) and even also Pt(η= 8.24%). It is expected that the efficient and economical film of PEDOT/TNTs can be a potential candidate for replacing the expensive Pt film on the CE of DSSCs.

Topic Category 工學院 > 化學工程學研究所
工程學 > 化學工業
Reference
  1. 1. Hasan, M. A.; Sumathy, K., Photovoltaic thermal module concepts and their performance analysis: A review, Renew. Sust. Energy Rev., 2010, 14, 1845-1859.
    連結:
  2. 2. Markvart, T., Solar electricity. John Wiley & Sons, New York, 2000.
    連結:
  3. 4. Chapin, D.; Fuller, C.; Pearson, G., A new silicon p‐n junction photocell for converting solar radiation into electrical power, J. Appl. Phys., 1954, 25, 676-677.
    連結:
  4. 6. Green, M. A.; Emery, K.; King, D. L.; Igari, S.; Warta, W., Solar cell efficiency tables, Prog. Photovoltaics, 2002, 10, 55-61.
    連結:
  5. 7. Gratzel, M., Photoelectrochemical cells, Nature, 2001, 414, 338-344.
    連結:
  6. 9. Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M., Porphyrin-sensitized solar cells with Cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency, Science, 2011, 334, 629-634.
    連結:
  7. 11. Fujishima, A., Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37-38.
    連結:
  8. 12. O'Regan, B.; Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737-740.
    連結:
  9. 13. Gratzel, M., Solar energy conversion by dye-sensitized photovoltaic cells, Inorg. Chem., 2005, 44, 6841-6851.
    連結:
  10. 14. Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H., Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell, Coordin. Chem. Rev., 2004, 248, 1381-1389.
    連結:
  11. 15. Lee, W. J.; Ramasamy, E.; Lee, D. Y.; Song, J. S., Dye-sensitized solar cells: Scale up and current–voltage characterization, Sol. Energy Mater. Sol. Cells, 2007, 91, 1676-1680.
    連結:
  12. 16. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells, Chem. Rev., 2010, 110, 6595-6663.
    連結:
  13. 17. Ooyama, Y.; Shimada, Y.; Inoue, S.; Nagano, T.; Fujikawa, Y.; Komaguchi, K.; Imae, I.; Harima, Y., New molecular design of donor-π-acceptor dyes for dye-sensitized solar cells: control of molecular orientation and arrangement on TiO2 surface, New J. Chem., 2011, 35, 111-118.
    連結:
  14. 18. Asbury, J. B.; Ellingson, R. J.; Ghosh, H. N.; Ferrere, S.; Nozik, A. J.; Lian, T., Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru(dcbpy)2(NCS)2 in solution and on nanocrystalline TiO2 and Al2O3 thin films, J. Phys. Chem. B, 1999, 103, 3110-3119.
    連結:
  15. 19. Ramakrishna, G.; Jose, D. A.; Kumar, D. K.; Das, A.; Palit, D. K.; Ghosh, H. N., Strongly coupled Ruthenium−polypyridyl complexes for efficient electron injection in dye-sensitized semiconductor nanoparticles, J. Phys. Chem. B, 2005, 109, 15445-15453.
    連結:
  16. 20. Benko, G.; Kallioinen, J.; Korppi-Tommola, J. E. I.; Yartsev, A. P.; Sundstrom, V., Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states, J. Am. Chem. Soc., 2001, 124, 489-493.
    連結:
  17. 21. O'Regan, B.; Moser, J.; Anderson, M.; Graetzel, M., Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation, J. Phys. Chem., 1990, 94, 8720-8726.
    連結:
  18. 22. Soedergren, S.; Hagfeldt, A.; Olsson, J.; Lindquist, S. E., Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells, J. Phys. Chem., 1994, 98, 5552-5556.
    連結:
  19. 23. Ikegami, M.; Suzuki, J.; Teshima, K.; Kawaraya, M.; Miyasaka, T., Improvement in durability of flexible plastic dye-sensitized solar cell modules, Sol. Energy Mater. Sol. Cells, 2009, 93, 836-839.
    連結:
  20. 24. Onoda, K.; Ngamsinlapasathian, S.; Fujieda, T.; Yoshikawa, S., The superiority of Ti plate as the substrate of dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2007, 91, 1176-1181.
    連結:
  21. 25. Ma, T.; Fang, X.; Akiyama, M.; Inoue, K.; Noma, H.; Abe, E., Properties of several types of novel counter electrodes for dye-sensitized solar cells, J. Electroanal. Chem., 2004, 574, 77-83.
    連結:
  22. 26. Miettunen, K.; Halme, J.; Lund, P., Segmented cell design for improved factoring of aging effects in dye solar cells, J. Phys. Chem. C, 2009, 113, 10297-10302.
    連結:
  23. 27. Sayama, K.; Hara, K.; Mori, N.; Satsuki, M.; Suga, S.; Tsukagoshi, S.; Abe, Y.; Sugihara, H.; Arakawa, H., Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain, Chem. Commun., 2000, 13, 1173-1174.
    連結:
  24. 28. Sayama, K.; Tsukagoshi, S.; Mori, T.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H., Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes, Sol. Energy Mater. Sol. Cells, 2003, 80, 47-71.
    連結:
  25. 29. Scheirs, J.; Gardette, J. L., Photo-oxidation and photolysis of poly (ethylene naphthalate), Polym. Degrad. Stab., 1997, 56, 339-350.
    連結:
  26. 31. Ngamsinlapasathian, S.; Sreethawong, T.; Suzuki, Y.; Yoshikawa, S., Doubled layered ITO/SnO2 conducting glass for substrate of dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2006, 90, 2129-2140.
    連結:
  27. 32. Park, J. H.; Jun, Y.; Yun, H. G.; Lee, S. Y.; Kang, M. G., Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate, J. Electrochem. Soc., 2008, 155, F145-F149.
    連結:
  28. 33. Miettunen, K.; Ruan, X.; Saukkonen, T.; Halme, J.; Toivola, M.; Guangsheng, H.; Lund, P., Stability of dye solar cells with photoelectrode on metal substrates. J. Electrochem. Soc., 2010, 157, B814-B819.
    連結:
  29. 34. Ito, S.; Ha, N. L. C.; Rothenberger, G.; Liska, P.; Comte, P.; Zakeeruddin, S. M.; Pechy, P.; Nazeeruddin, M. K.; Gratzel, M., High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode, Chem. Commun., 2006, 20, 4004-4006.
    連結:
  30. 35. Lee, C. H.; Chiu, W. H.; Lee, K. M.; Hsieh, W. F.; Wu, J. M., Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates, J. Mater. Chem., 2011, 21, 5114-5119.
    連結:
  31. 36. Yun, H. G.; Bae, B. S.; Kang, M. G., A simple and highly efficient method for surface treatment of Ti substrates for use in dye-sensitized solar cell, Adv. Energy Mater., 2011, 1, 337-342.
    連結:
  32. 37. An, J.; Guo, W.; Ma, T., Enhanced photoconversion efficiency of all-flexible dye-sensitized solar cells based on a Ti substrate with TiO2 nanoforest underlayer, Small, 2012, 8, 3427-3431.
    連結:
  33. 38. Li, L. L.; Tsai, C. Y.; Wu, H. P.; Chen, C. C.; Diau, E. W. G., Fabrication of long TiO2 nanotube arrays in a short time using a hybrid anodic method for highly efficient dye-sensitized solar cells, J. Mater. Chem., 2010, 20, 2753-2819.
    連結:
  34. 39. Chen, C. C.; Chung, H. W.; Chen, C. H.; Lu, H. P.; Lan, C. M.; Chen, S. F.; Luo, L.; Hung, C. S.; Diau, E. W. G., Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells, J. Phys. Chem. C, 2008, 112, 19151-19157.
    連結:
  35. 40. Hu, A.; Li, H.; Jia, Z.; Xia, Z., TiO2 nanorods branched on fast-synthesized large clearance TiO2 nanotube arrays for dye-sensitized solar cells, J. Solid State Chem., 2011, 184, 2936-2940.
    連結:
  36. 41. Alivov, Y.; Fan, Z. Y., Efficiency of dye sensitized solar cells based on TiO2 nanotubes filled with nanoparticles, Appl. Phys. Lett., 2009, 95, 063504.
    連結:
  37. 42. Chen, J. G.; Chen, C. Y.; Wu, C. G.; Lin, C. Y.; Lai, Y. H.; Wang, C. C.; Chen, H. W.; Vittal, R.; Ho, K. C., An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays, J. Mater. Chem., 2010, 20, 7201-7207.
    連結:
  38. 43. Kim, D.; Ghicov, A.; Albu, S. P.; Schmuki, P., Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells, J. Am. Chem. Soc., 2008, 130, 16454-16455.
    連結:
  39. 44. Zheng, Q.; Kang, H.; Yun, J.; Lee, J.; Park, J. H.; Baik, S., Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells, ACS Nano, 2011, 5, 5088-5093.
    連結:
  40. 45. Wang, G.; Lin, Y., Novel counter electrodes based on NiP-plated glass and Ti plate substrate for dye-sensitized solar cells, J. Mater. Sci., 2007, 42, 5281-5285.
    連結:
  41. 46. Huang, C. Y.; Hsu, Y. C.; Chen, J. G.; Suryanarayanan, V.; Lee, K. M.; Ho, K. C., The effects of hydrothermal temperature and thickness of TiO2 film on the performance of a dye-sensitized solar cell, Sol. Energy Mater. Sol. Cells 2006, 90, 2391-2397.
    連結:
  42. 47. Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Gratzel, M., Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells, Nano Lett. 2005, 5, 1789-1792.
    連結:
  43. 48. Sheppard, S. A.; Campbell, S. A.; Smith, J. R.; Lloyd, G. W.; Walsh, F. C.; Ralph T. R., Electrochemical and microscopic characterisation of platinum-coated perfluorosulfonic acid (Nafion 117) materials[dagger], Analyst., 1998, 123, 1923-1929.
    連結:
  44. 49. Lin, C. Y.; Lai, Y. H.; Chen, H. W.; Chen, J. G.; Kung, C. W.; Vittal, R.; Ho, K. C., Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode, Energy Environ. Sci., 2011, 4, 3448-3455.
    連結:
  45. 50. Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G., ZnO nanostructures for dye-sensitized solar cells, Adv. Mater., 2009, 21, 4087-4108.
    連結:
  46. 51. Zheng, H.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar‐zadeh, K., Nanostructured Tungsten oxide–properties, synthesis, and applications, Adv. Funct. Mater., 2011, 21, 2175-2196.
    連結:
  47. 52. Zheng, H.; Tachibana, Y.; Kalantar-zadeh, K., Dye-sensitized solar cells based on WO3, Langmuir, 2010, 26, 19148-19152.
    連結:
  48. 53. Rho, C.; Suh, J. S., Filling TiO2 nanoparticles in the channels of TiO2 nanotube membranes to enhance the efficiency of dye-sensitized solar cells, Chem. Phys. Lett., 2011, 513, 108-111.
    連結:
  49. 54. Le Viet, A.; Jose, R.; Reddy, M.; Chowdari, B.; Ramakrishna, S., Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph, J. Phys. Chem. C, 2010, 114, 21795-21800.
    連結:
  50. 55. Vlachopoulos, N.; Liska, P.; Augustynski, J.; Gratzel, M., Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films, J. Am. Chem. Soc., 1988, 110, 1216-1220.
    連結:
  51. 56. Koelsch, M.; Cassaignon, S.; Ta Thanh Minh, C.; Guillemoles, J. F.; Jolivet, J. P., Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium, Thin Solid Films, 2004, 451-452, 86-92.
    連結:
  52. 57. Park, N. G.; Van de Lagemaat, J.; Frank, A., Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells, J. Phys. Chem. B, 2000, 104, 8989-8994.
    連結:
  53. 58. Kay, A.; Gratzel, M., Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder, Sol. Energy Mater. Sol. Cells, 1996, 44, 99-117.
    連結:
  54. 59. Galoppini, E., Linkers for anchoring sensitizers to semiconductor nanoparticles, Coordin. Chem. Rev., 2004, 248, 1283-1297.
    連結:
  55. 60. Sheka, E. F.; Zayets, V. A., On the donor-acceptor interaction and electron transfer at the titanium oxide-organic dye interface, Phys. Solid State, 2007, 49, 2004-2009.
    連結:
  56. 61. Du, L.; Furube, A.; Hara, K.; Katoh, R.; Tachiya, M., Mechanism of particle size effect on electron injection efficiency in ruthenium dye-sensitized TiO2 nanoparticle films, J. Phys. Chem. C, 2010, 114, 8135-8143.
    連結:
  57. 62. Goncalves, L. M.; De Zea Bermudez, V.; Ribeiro, H. A.; Mendes, A. M., Dye-sensitized solar cells: A safe bet for the future, Energy Environ. Sci., 2008, 1, 655-667.
    連結:
  58. 63. Chen, C. Y.; Wang, M.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc Le, C. H.; Decoppet, J. D.; Tsai, J. H.; Gratzel, C.; Wu, C. G.; Zakeeruddin, S. M.; Gratzel, M., Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano, 2009, 3, 3103-3109.
    連結:
  59. 64. Ning, Z.; Fu, Y.; Tian, H., Improvement of dye-sensitized solar cells: What we know and what we need to know, Energy Environ. Sci., 2010, 3, 1170-1181.
    連結:
  60. 65. Gratzel, M., Mesoscopic solar cells for electricity and hydrogen production from sunlight, Chem. Lett., 2005, 34, 8-13.
    連結:
  61. 66. Pavasupree, S.; Ngamsinlapasathian, S.; Suzuki, Y.; Yoshikawa, S., Synthesis and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 from high surface area nanosheet TiO2, J. Nanosci. Nanotechnol., 2006, 6, 3685-3692.
    連結:
  62. 67. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., Nanowire dye-sensitized solar cells, Nat. Mater., 2005, 4, 455-459.
    連結:
  63. 68. Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J., Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays, Nano Lett., 2006, 7, 69-74.
    連結:
  64. 69. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Lett., 2006, 6, 215-218.
    連結:
  65. 70. Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A., A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Sol. Energy Mater. Sol. Cells, 2006, 90, 2011-2075.
    連結:
  66. 71. Wang, H.; Yip, C. T.; Cheung, K. Y.; Djurišić, A. B.; Xie, M. H.; Leung, Y. H.; Chan, W. K., Titania nanotube array-based photovoltaic cells, Appl. Phys. Lett., 2006, 89, 023508.
    連結:
  67. 72. Shankar, K.; Mor, G. K.; Prakasam, H. E.; Yoriya, S.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells, Nanotechnol., 2007, 18, 065707.
    連結:
  68. 73. Paulose, M.; Prakasam, H. E.; Varghese, O. K.; Peng, L.; Popat, K. C.; Mor, G. K.; Desai, T. A.; Grimes, C. A., TiO2 nanotube arrays of 1000 mm m length by anodization of titanium foil: Phenol red diffusion, J. Phys. Chem. C, 2007, 111, 14992-14997.
    連結:
  69. 74. Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A., Anodic growth of highly ordered TiO2 nanotube arrays to 134 mm m in length, J. Phys. Chem. B, 2006, 110, 16179-16184.
    連結:
  70. 75. Li, L. L.; Chen, Y. J.; Wu, H. P.; Wang, N. S.; Diau, E. W. G., Detachment and transfer of ordered TiO2 nanotube arrays for front-illuminated dye-sensitized solar cells, Energy Environ. Sci., 2011, 4, 3420-3425.
    連結:
  71. 76. Lin, C. J.; Yu, W. Y.; Chien, S. H., Rough conical-shaped TiO2 nanotube arrays for flexible backilluminated dye-sensitized solar cells, Appl. Phys. Lett., 2008, 93, 1073-1077.
    連結:
  72. 77. Chen, Q. W.; Xu, D. S., Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells, J. Phys. Chem. C, 2009, 113, 6310-6314.
    連結:
  73. 78. Rani, S.; Roy, S. C.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Kim, S.; Yoriya, S.; Latempa, T. J.; Grimes, C. A., Synthesis and applications of electrochemically self-assembled titania nanotube arrays, Phys. Chem. Chem. Phys., 2010, 12, 2780-2800.
    連結:
  74. 79. Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A., Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length, J. Phys. Chem. B, 2006, 110, 16179-16184.
    連結:
  75. 80. Mor, G.; Varghese, O. K.; Paulose, M.; Mukherjee, N.; Grimes, C., Fabrication of tapered, conical-shaped titania nanotubes, J. Mater. Res., 2003, 18, 2588-2593.
    連結:
  76. 81. Parkhutik, V.; Shershulsky, V., Theoretical modelling of porous oxide growth on aluminium, Journal of Physics D: Appl. Phys., 1992, 25, 1258.
    連結:
  77. 82. Wang, Q.; Ito, S.; Gratzel, M.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J.; Bessho, T.; Imai, H., Characteristics of high efficiency dye-sensitized solar cells, J. Phys. Chem. B, 2006, 110, 25210-25221.
    連結:
  78. 83. Nakade, S.; Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S., Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells, J. Phys. Chem. B, 2003, 107, 8607-8611.
    連結:
  79. 84. Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Gratzel, M., Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells, Nano Lett., 2005, 5, 1789-1792.
    連結:
  80. 85. Charoensirithavorn, P.; Ogomi, Y.; Sagawa, T.; Hayase, S.; Yoshikawaa, S., Improvement of dye-sensitized solar cell through TiCl4-treated TiO2 nanotube arrays, J. Electrochem. Soc., 2010, 157, B354-B356.
    連結:
  81. 86. Vougioukalakis, G. C.; Philippopoulos, A. I.; Stergiopoulos, T.; Falaras, P., Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells, Coordin. Chem. Rev., 2011, 255, 2602-2621.
    連結:
  82. 87. Ellingson, R. J.; Asbury, J. B.; Ferrere, S.; Ghosh, H. N.; Sprague, J. R.; Lian, T.; Nozik, A. J., Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru(4,4'-dicarboxy-2,2'-bipyridine)2(NCS)2] by infrared transient absorption, J. Phys. Chem. B, 1998, 102, 6455-6458.
    連結:
  83. 88. Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Gratzel, M., A swift dye uptake procedure for dye sensitized solar cells, Chem. Commun., 2003, 12, 1456-1457.
    連結:
  84. 89. Ryan M., P., Progress in ruthenium complexes for dye sensitised solar cells, Platinum Metals Rev., 2009, 53, 216-218.
    連結:
  85. 90. Gratzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, J. Photochem. Photobiol. A: Chem., 2004, 164, 3-14.
    連結:
  86. 91. Lee, C. Y.; Hupp, J. T., Dye Sensitized Solar Cells: TiO2 Sensitization with a Bodipy-Porphyrin Antenna System, Langmuir, 2010, 26, 3760-3765.
    連結:
  87. 92. Imahori, H.; Matsubara, Y.; Iijima, H.; Umeyama, T.; Matano, Y.; Ito, S.; Niemi, M.; Tkachenko, N. V.; Lemmetyinen, H., Effects of meso-diarylamino group of porphyrins as sensitizers in dye-sensitized solar cells on optical, electrochemical, and photovoltaic properties, J. Phys. Chem. C, 2010, 114, 10656-10665.
    連結:
  88. 93. Li, C.; Liu, Z.; Schoneboom, J.; Eickemeyer, F.; Pschirer, N. G.; Erk, P.; Herrmann, A.; Mullen, K., Perylenes as sensitizers in hybrid solar cells: how molecular size influences performance, J. Mater. Chem. 2009, 19, 5405.
    連結:
  89. 94. Jin, Y.; Hua, J.; Wu, W.; Ma, X.; Meng, F., Synthesis, characterization and photovoltaic properties of two novel near-infrared absorbing perylene dyes containing benzo[e]indole for dye-sensitized solar cells, Synthetic Metals, 2008, 158, 64-71.
    連結:
  90. 95. Wu, W.; Hua, J.; Jin, Y.; Zhan, W.; Tian, H., Photovoltaic properties of three new cyanine dyes for dye-sensitized solar cells, Photochem. Photobiol. Sci., 2008, 7, 63.
    連結:
  91. 96. Ma, X.; Hua, J.; Wu, W.; Jin, Y.; Meng, F.; Zhan, W.; Tian, H., A high-efficiency cyanine dye for dye-sensitized solar cells, Tetrahedron, 2008, 64, 345-350.
    連結:
  92. 97. Hattori, S.; Hasobe, T.; Ohkubo, K.; Urano, Y.; Umezawa, N.; Nagano, T.; Wada, Y.; Yanagida, S.; Fukuzumi, S., Enhanced energy and quantum efficiencies of a nanocrystalline photoelectrochemical cell sensitized with a donor-acceptor dyad derived from fluorescein, J. Phys. Chem. B, 2004, 108, 15200-15205.
    連結:
  93. 98. Mann, J. R.; Gannon, M. K.; Fitzgibbons, T. C.; Detty, M. R.; Watson, D. F., Optimizing the photocurrent efficiency of dye-sensitized solar cells through the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline titania films, J. Phys. Chem. C, 2008, 112, 13057-13061.
    連結:
  94. 99. Sayama, K.; Hara, K.; Sugihara, H.; Arakawa, H.; Mori, N.; Satsuki, M.; Suga, S.; Tsukagoshi, S.; Abe, Y., Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain, Chem.Commun., 2000, 13, 1173-1174.
    連結:
  95. 100. Sayama, K.; Tsukagoshi, S.; Mori, T.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H., Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes, Sol. Energy Mater. Sol. Cells, 2003, 80, 47-71.
    連結:
  96. 101. Hara, K.; Sayama, K.; Arakawa, H.; Ohga, Y.; Shinpo, A.; Suga, S., A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%, Chem. Commun., 2001, 6, 569-570.
    連結:
  97. 102. Wang, Z. S.; Cui, Y.; Danoh, Y.; Kasada, C.; Shinpo, A.; Hara, K., Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells: Electron lifetime improved by coadsorption of deoxycholic acid, J. Phys. Chem. C, 2007, 111, 7224-7230.
    連結:
  98. 103. Chen, Y. S.; Li, C.; Zeng, Z. H.; Wang, W. B.; Wang, X. S.; Zhang, B. W., Efficient electron injection due to a special adsorbing group combination of carboxyl and hydroxyl: dye-sensitized solar cells based on new hemicyanine dyes, J. Mater. Chem., 2005, 15, 1654.
    連結:
  99. 104. Wang, Z. S.; Li, F. Y.; Huang, C. H., Highly efficient sensitization of nanocrystalline TiO2 films with styryl benzothiazolium propylsulfonate, Chem. Commun., 2000, 20, 2063-2064.
    連結:
  100. 105. Howie, W. H.; Claeyssens, F.; Miura, H.; Peter, L. M., Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes, J. Am. Chem. Soc., 2008, 130, 1367-1375.
    連結:
  101. 106. Guo, F.; Qu, S.; Wu, W.; Li, J.; Ying, W.; Hua, J., Synthesis and photovoltaic performance of new diketopyrrolopyrrole (DPP) dyes for dye-sensitized solar cells, Synthetic Metals, 2010, 160, 1767-1773.
    連結:
  102. 107. Qu, S.; Wu, W.; Hua, J.; Kong, C.; Long, Y.; Tian, H., New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells, J. Phys. Chem. C, 2010, 114, 1343-1349.
    連結:
  103. 108. Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P., Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks, Chem. Mater., 2010, 22, 1915-1925.
    連結:
  104. 109. Wolfbauer, G.; Bond, A. M.; Eklund, J. C.; MacFarlane, D. R., A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2001, 70, 85-101.
    連結:
  105. 110. Feldt, S. M.; Wang, G.; Boschloo, G.; Hagfeldt, A., Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couples, J. Phys. Chem. C, 2011, 115, 21500-21507.
    連結:
  106. 111. Tian, H.; Sun, L., Iodine-free redox couples for dye-sensitized solar cells, J. Mater. Chem., 2011, 21, 10592.
    連結:
  107. 112. Yu, Z.; Vlachopoulos, N.; Gorlov, M.; Kloo, L., Liquid electrolytes for dye-sensitized solar cells, Dalton Transactions, 2011, 40, 10289.
    連結:
  108. 113. Hamann, T. W.; Farha, O. K.; Hupp, J. T., Outer-sphere redox couples as shuttles in dye-sensitized solar cells. performance enhancement based on photoelectrode modification via atomic layer deposition, J. Phys. Chem. C, 2008, 112, 19756-19764.
    連結:
  109. 114. Hattori, S.; Wada, Y.; Yanagida, S.; Fukuzumi, S., Blue copper model complexes with distorted tetragonal geometry acting as effective electron transfer mediators in dye-sensitized solar cells, J. Am. Chem. Soc., 2005, 127, 9648-9654.
    連結:
  110. 115. Li, T. C.; Spokoyny, A. M.; She, C.; Farha, O. K.; Mirkin, C. A.; Marks, T. J.; Hupp, J. T., Ni(III)/(IV) Bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells, J. Am. Chem. Soc., 2010, 132, 4580-4582.
    連結:
  111. 116. Bai, Y.; Yu, Q.; Cai, N.; Wang, Y.; Zhang, M.; Wang, P., High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle, Chem. Commun., 2011, 47, 4376.
    連結:
  112. 117. Wang, Z. S.; Sayama, K.; Sugihara, H., Efficient eosin Y dye-sensitized solar cell containing Br-/Br3- electrolyte, J. Phys. Chem. B, 2005, 109, 22449-22455.
    連結:
  113. 118. Bergeron, B. V.; Marton, A.; Oskam, G.; Meyer, G. J., Dye-sensitized SnO2 electrodes with iodide and pseudohalide redox mediators, J. Phys. Chem. B, 2005, 109, 937-943.
    連結:
  114. 119. Oskam, G.; Bergeron, B. V.; Meyer, G. J.; Searson, P. C., Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J. Phys. Chem. B, 2001, 105, 6867-6873.
    連結:
  115. 120. Murakami, T. N.; Gratzel, M., Counter electrodes for DSC: Application of functional materials as catalysts, Inorg. Chim. Acta, 2008, 361, 572-580.
    連結:
  116. 121. Macagno, V.; Giordano, M.; Arvia, A., Kinetics and mechanisms of electrochemical reactions on platinum with solutions of iodine-sodium iodide in acetonitrile, Electrochim. Acta, 1969, 14, 335-357.
    連結:
  117. 122. Fang, X.; Ma, T.; Guan, G.; Akiyama, M.; Kida, T.; Abe, E., Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell, J. Electroanal. Chem., 2004, 570, 257-263.
    連結:
  118. 123. Khelashvili, G.; Behrens, S.; Weidenthaler, C.; Vetter, C.; Hinsch, A.; Kern, R.; Skupien, K.; Dinjus, E.; Bonnemann, H., Catalytic platinum layers for dye solar cells: A comparative study, Thin Solid Films, 2006, 511, 342-348.
    連結:
  119. 124. Imoto, K.; Takahashi, K.; Yamaguchi, T.; Komura, T.; Nakamura, J.; Murata, K., High performance carbon counter electrode for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2003, 79, 459-469.
    連結:
  120. 125. Yohannes, T.; Inganas, O., Photoelectrochemical studies of the junction between poly[3-(4-octylphenyl)thiophene] and a redox polymer electrolyte, Sol. Energy Mater. Sol. Cells, 1998, 51, 193-202.
    連結:
  121. 126. Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S., I−/I3− redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells, J. Photochem. Photobiol. A: Chem., 2004, 164, 153-157.
    連結:
  122. 127. Saito, Y.; Kitamura, T.; Wada, Y.; Yanagida, S., Application of poly(3,4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells, Chem. Lett., 2002, 10, 1060-1061.
    連結:
  123. 128. Ahmad, S.; Yum, J. H.; Xianxi, Z.; Gratzel, M.; Butt, H. J.; Nazeeruddin, M. K., Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids, J. Mater. Chem., 2010, 20, 1654.
    連結:
  124. 129. Ahmad, S.; Yum, J. H.; Butt, H. J.; Nazeeruddin, M. K.; Gratzel, M., Efficient platinum-free counter electrodes for dye-sensitized solar cell applications, ChemPhysChem, 2010, 11, 2814-2819.
    連結:
  125. 130. Heywang, G.; Jonas, F., Poly(alkylenedioxythiophene)s-new, very stable conducting polymers, Adv. Mater., 1992, 4, 116-118.
    連結:
  126. 131. Wu, J.; Li, Q.; Fan, L.; Lan, Z.; Li, P.; Lin, J.; Hao, S., High performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells, J. Power Sources, 2008, 181, 172-176.
    連結:
  127. 132. Li, Z.; Ye, B.; Hu, X.; Ma, X.; Zhang, X.; Deng, Y., Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell, Electrochemistry Communications, 2009, 11, 1768-1771.
    連結:
  128. 133. Imoto, K.; Takahashi, K.; Yamaguchi, T.; Komura, T.; Nakamura, J. I.; Murata, K., High performance carbon counter electrode for dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2003, 79, 459-469.
    連結:
  129. 134. Hino, T.; Ogawa, Y.; Kuramoto, N., Dye-sensitized solar cell with single-walled carbon nanotube thin film prepared by an electrolytic micelle disruption method as the counterelectrode, Fuller. Nanotubes Carbon Nanostruct., 2006, 14, 607-619.
    連結:
  130. 135. Huang, Z.; Liu, X.; Li, K.; Li, D.; Luo, Y.; Li, H.; Song, W.; Chen, L.; Meng, Q., Application of carbon materials as counter electrodes of dye-sensitized solar cells, Electrochem. Commun., 2007, 9, 596-598.
    連結:
  131. 136. Chen, J.; Li, K.; Luo, Y.; Guo, X.; Li, D.; Deng, M.; Huang, S.; Meng, Q., A flexible carbon counter electrode for dye-sensitized solar cells, Carbon, 2009, 47, 2704-2708.
    連結:
  132. 137. Wang, X.; Zhi, L.; Mullen, K., Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett., 2008, 8, 323-327.
    連結:
  133. 138. Cai, F.; Chen, J.; Xu, R., Porous acetylene-black spheres as the cathode materials of dye-sensitized solar cells, Chem. Lett., 2006, 35, 1266-1267.
    連結:
  134. 139. Groenendaal, L.; Zotti, G.; Aubert, P. H.; Waybright, S. M.; Reynolds, J. R., Electrochemistry of poly(3,4-alkylenedioxythiophene) derivatives, Adv. Mater., 2003, 15, 855-879.
    連結:
  135. 140. Zhang, J.; Li, X.; Guo, W.; Hreid, T.; Hou, J.; Su, H.; Yuan, Z., Electropolymerization of a poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes counter electrode for dye-sensitized solar cells and characterization of its performance, Electrochim. Acta, 2011, 56, 3147-3152.
    連結:
  136. 141. Lee, K. M.; Chiu, W. H.; Wei, H. Y.; Hu, C. W.; Suryanarayanan, V.; Hsieh, W. F.; Ho, K. C., Effects of mesoscopic poly (3, 4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells, Thin Solid Films, 2010, 518, 1716-1721.
    連結:
  137. 142. Lee, K. S.; Lee, Y.; Lee, J. Y.; Ahn, J. H.; Park, J. H., Flexible and platinum-free dye-sensitized solar cells with conducting polymer coated graphene counter electrodes, ChemSusChem, 2012, 5, 379-382.
    連結:
  138. 143. Pringle, J. M.; Armel, V.; MacFarlane, D. R., Electrodeposited PEDOT on plastic cathodes for dye-sensitized solar cells, Chem. Commun., 2010, 46, 5367-5369.
    連結:
  139. 144. Trevisan, R.; Dobbelin, M.; Boix, P. P.; Barea, E. M.; Tena-Zaera, R.; Mora-Sero, I.; Bisquert, J., PEDOT nanotube arrays as high performing counter electrodes for dye sensitized solar cells. Study of the interactions among electrolytes and counter electrodes, Adv. Energy Mater., 2011, 1, 781-784.
    連結:
  140. 145. Lee, T. H.; Do, K.; Lee, Y. W.; Jeon, S. S.; Kim, C.; Ko, J.; Im, S. S., High performance dye-sensitized solar cells based on PEDOT nanofibers as an efficient catalytic counter electrode, J. Mater. Chem., 2012, 22, 21624-21629.
    連結:
  141. 146. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M., Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes, J. Am. Chem. Soc., 1993, 115, 6382-6390.
    連結:
  142. 147. Mann, J. R.; Gannon, M. K.; Fitzgibbons, T. C.; Detty, M. R.; Watson, D. F., Optimizing the photocurrent efficiency of dye-sensitized solar cells through the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline titania films, J. Phys. Chem. C, 2008, 112, 13057-13061.
    連結:
  143. 148. O'Regan, B. C.; Durrant, J. R.; Sommeling, P. M.; Bakker, N. J., Influence of the TiCl4 treatment on nanocrystalline TiO2 Films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit, J. Phys. Chem. C, 2007, 111, 14001-14010.
    連結:
  144. 149. Graetzel, M., Mesoscopic solar cells for electricity and hydrogen production from sunlight, ChemInform, 2005, 34, 8-13.
    連結:
  145. 150. Shockley, W.; Queisser, H. J., Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys., 1961, 32, 510-519.
    連結:
  146. 151. Zhang, Z. W.; Pan, D. Y.; Feng, J. J.; Guo, L.; Peng, L. W.; Xi, C.; Li, J. H.; Li, Z.; Wu, M. H.; Ren, Z. Y., Enhanced photoelectrocatalytic activity in TiO2 nanotube arrays modified with TiO2 nanoparticles, Mater. Lett., 2012, 66, 54-56.
    連結:
  147. 152. Kang, T. S.; Moon, S. H.; Kim, K. J., Enhanced photocurrent-voltage characteristics of Ru(II)-dye sensitized TiO2 solar cells with TiO2-WO3 buffer layers prepared by a sol-gel method, J. Electrochem. Soc., 2002, 149, E155-E158.
    連結:
  148. 153. Ito, S.; Liska, P.; Comte, P.; Charvet, R.; Pechy, P.; Bach, U.; Schmidt-Mende, L.; Zakeeruddin, S. M.; Kay, A.; Nazeeruddin, M. K.; Gratzel, M., Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells, Chem. Commun., 2005, 34, 4351-4353.
    連結:
  149. 154. Hamann, T. W.; Farha, O. K.; Hupp, J. T., Outer sphere redox couples as shuttles in dye-sensitized solar cells. Performance enhancement based on photoelectrode modification via atomic layer deposition, J. Phys. Chem. C, 2008, 112, 19756-19764.
    連結:
  150. 155. Ahmad, S.; Yum, J. H.; Xianxi, Z.; Gratzel, M.; Butt, H. J.; Nazeeruddin, M. K., Dye-sensitized solar cells based on poly (3, 4-ethylenedioxythiophene) counter electrode derived from ionic liquids, J. Mater. Chem., 2010, 20, 1654-1658.
    連結:
  151. 156. Lin, L. Y.; Lee, C. P.; Vittal, R.; Ho, K. C., Selective conditions for the fabrication of a flexible dye-sensitized solar cell with Ti/TiO2 photoanode, J. Power Sources, 2010, 195, 4344-4349.
    連結:
  152. 157. Han, L.; Koide, N.; Chiba, Y.; Mitate, T., Modeling of an equivalent circuit for dye-sensitized solar cells, Appl. Phys. Lett, 2004, 84, 2433-2435.
    連結:
  153. 158. Han, L.; Koide, N.; Chiba, Y.; Islam, A.; Mitate, T., Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance, C. R. Chimie, 2006, 9, 645-651.
    連結:
  154. 159. Kim, G. O.; Ryu, K. S., Dynamic response of charge transfer and recombination at various electrodes in dye-sensitized solar cells investigated using intensity modulated photocurrent and photovoltage spectroscopy, B. Korean Chem. Soc., 2012, 33, 469-472.
    連結:
  155. 160. Wu, M.; Lin, X.; Wang, T.; Qiu, J.; Ma, T., Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes, Energy Environ. Sci., 2011, 4, 2308-2315.
    連結:
  156. 161. John, S. E.; Mohapatra, S. K.; Misra, M., Double-wall anodic titania nanotube arrays for water photooxidation, Langmuir, 2009, 25, 8240-8247.
    連結:
  157. 162. Wu, H.; Zhang, Z., High photoelectrochemical water splitting performance on nitrogen doped double-wall TiO2 nanotube array electrodes, Int. J. Hydrogen Energy, 2011, 36, 13481-13487.
    連結:
  158. 163. Albu, S. P.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G. E.; Macak, J. M.; Schmuki, P., Formation of double-walled TiO2 nanotubes and robust anatase membranes, Adv. Mater., 2008, 20, 4135-4139.
    連結:
  159. 164. Shankar, K.; Mor, G. K.; Paulose, M.; Varghese, O. K.; Grimes, C. A., Effect of device geometry on the performance of TiO2 nanotube array-organic semiconductor double heterojunction solar cells, J. Non-Cryst. Solids, 2008, 354, 2767-2771.
    連結:
  160. 165. Jaroenworaluck, A.; Regonini, D.; Bowen, C.; Stevens, R.; Allsopp, D., Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte, J. Mater. Sci., 2007, 42, 6729-6734.
    連結:
  161. 166. Lohrengel, M. M., Thin anodic oxide layers on aluminium and other valve metals: high field regime, Mater. Sci. Eng., R, 1993, 11, 243-294.
    連結:
  162. 167. J. Frank, A.; Kopidakis, N.; Lagemaat, J. v. d., Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties, Coordin Chem Rev, 2004, 248, 1165-1179.
    連結:
  163. 168. Barnes, P. R. F.; O’Regan, B. C., Electron recombination kinetics and the analysis of collection efficiency and diffusion length measurements in dye-sensitized solar cells, J. Phys. Chem. C, 2010, 114, 19134-19140.
    連結:
  164. 169. Barnes, P. R. F.; Anderson, A. Y.; Koops, S. E.; Durrant, J. R.; O’Regan, B. C., Electron injection efficiency and diffusion length in dye-sensitized solar cells derived from incident photon conversion efficiency measurements. J. Phys. Chem. C, 2008, 113, 1126-1136.
    連結:
  165. 170. Kang, M. G.; Park, N. G.; Ryu, K. S.; Chang, S. H.; Kim, K. J., A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate, Sol. Energy Mater. Sol. Cells, 2006, 90, 574-581.
    連結:
  166. 171. Jun, Y.; Kim, J.; Kang, M. G., A study of stainless steel-based dye-sensitized solar cells and modules, Sol. Energy Mater. Sol. Cells, 2007, 91, 779-784.
    連結:
  167. 172. Yun, H. G.; Park, J. H.; Bae, B. S.; Kang, M. G., Dye-sensitized solar cells with TiO2 nanoparticles on TiO2 nanotube-grown Ti substrates, J. Mater. Chem., 2011, 21, 3558-3561.
    連結:
  168. 173. Yip, C. T.; Mak, C. S. K.; Djurišić, A. B.; Hsu, Y. F.; Chan, W. K., Dye-sensitized solar cells based on TiO2 nanotube/porous layer mixed morphology, Appl. Phys. A, 2008, 92, 589-593.
    連結:
  169. 174. Radovic-Hrapovic, Z.; Jerkiewicz, G., The temperature dependence of the cyclic-voltammetry response for the Pt (110) electrode in aqueous H2SO4 solution, J. Electroanal. Chem., 2001, 499, 61-66.
    連結:
  170. 175. Sheppard, S. A.; Campbell, S. A.; Smith, J. R.; Lloyd, G. W.; Walsh, F. C.; Ralph, T. R., Electrochemical and microscopic characterisation of platinum-coated perfluorosulfonic acid (Nafion 117) materials, Analyst, 1998, 123, 1923-1929.
    連結:
  171. 176. Van de Lagemaat, J.; Frank, A. J., Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 Films:  transient photocurrent and random-walk modeling studies, J. Phys. Chem. B, 2001, 105, 11194-11205.
    連結:
  172. 177. Dunn, H. K.; Peter, L. M., How efficient is electron collection in dye-sensitized solar cells? Comparison of different dynamic methods for the determination of the electron diffusion length, J. Phys. Chem. C, 2009, 113, 4726-4731.
    連結:
  173. 178. Liu, R.; Lee, S. B., MnO2/poly (3, 4-ethylenedioxythiophene) coaxial nanowires by one-step coelectrodeposition for electrochemical energy storage, J. Am. Chem. Soc., 2008, 130, 2942-2943.
    連結:
  174. 179. Bay, L.; West, K.; Winther-Jensen, B.; Jacobsen, T., Electrochemical reaction rates in a dye-sensitised solar cell-the iodide/tri-iodide redox system, Sol. Energy Mater. Sol Cells, 2006, 90, 341-351.
    連結:
  175. 180. Muto, T.; Ikegami, M.; Kobayashi, K.; Miyasaka, T., Conductive polymer-based mesoscopic counterelectrodes for plastic dye-sensitized solar cells, Chem. Lett., 2007, 36, 804-805.
    連結:
  176. 181. Varghese, O. K.; Gong, D.; Paulose, M.; Grimes, C. A.; Dickey, E. C., Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, J. Mater. Res., 2003, 18, 156-165.
    連結:
  177. 182. Lin, R. Y. Y.; Yen, Y. S.; Cheng, Y. T.; Lee, C. P.; Hsu, Y. C.; Chou, H. H.; Hsu, C. Y.; Chen, Y. C.; Lin, J. T.; Ho, K. C.; Tsai, C., Dihydrophenanthrene-based metal-free dyes for highly efficient cosensitized solar cells, Org. Lett, 2012, 14, 3612-3615.
    連結:
  178. 183. Hauch, A.; Georg, A., Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochim. Acta, 2001, 46, 3457-3466.
    連結:
  179. 184. Wu, M.; Lin, X.; Hagfeldt, A.; Ma, T., A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells, Chem. Commun., 2011, 47, 4535-4537.
    連結:
  180. 3. Tsokos, K. A., Physics for the IB Diploma, Cambridge University Press, United Kingdom, 2010.
  181. 5. Wu, X.; Keane, J.; Dhere, R.; DeHart, C.; Duda, A.; Gessert, T.; Asher, S.; Levi, D.; Sheldon, P., 16.5%-efficient CdS/CdTe polycrystalline thin-film solar cell, Proceedings of the 17th European photovoltaic solar energy conference, James & James Ltd., London, 2001, 995-1000.
  182. 8. Bube, R. H.; Bube, R. H., Photovoltaic Mater., World Scientific, 1998.
  183. 10. Becquerel, A. E., Recherches sur les effets de la radiation chimique de la lumiere solaire, au moyen des courants electriques, C. R. Acad. Sci., 1839, 9, 145-149.
  184. 30. Zweifel, H.; Maier, R. D.; Schiller, M., Plastics Additives Handbook, Hanser Verlag, Germany, 2009.