PYRIN domains 的表現,純化及三維核磁共振結構分析

Translated Titles

Expression, purification and the NMR analysis of PYRIN domains



Key Words

pyrin ; 核磁共振 ; PYNOD ; pyrin ; NMR ; PYNOD



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

先天免疫系統招募各種穿膜及細胞質中生殖系編碼 (germline-encoded)的模式識別受體(pattern recognition receptors, PRRs) 來偵測外來病原的pathogen-associatedmolecular patterns (PAMPs),像是脂多醣 (lipopolysaccharide, LPS), 肽聚醣(peptidoglycan, PGN),鞭毛(flagellin), 核酸(DNA) 及CpG DNA. 這些被PAMPs 刺激的受體便會啟動細胞內的訊息傳遞以達到宿主防禦的反應。 當PRRs 的leucine-rich repeat (LRR) 辨認到各種各樣的PAMPs, 細胞質中nucleotide-binding domain and leucine-rich repeat-containing receptors (NLRs)的N 端Pyrin domain (PYD) 利用它的homotypic 作用力使訊號傳到下游。PYD-containingNLRs (NLRPs)家族總共有14 個成員,而其中幾個發生突變跟人類發炎失調疾病息息相關。 人類的PYNOD, 亦稱NLRP10 是一個新穎的發炎負向調控者,其特徵是缺乏C端的LRR。通過它的PYD domain, PYNOD抑制ASC (apoptosis-associated speck-like protein containing a CARD)的聚合反應,使capase-1 的活化以及caspase-1 媒介的1L-1β 成熟化受到壓制。由於PYNOD 具有抗發炎性,從結構的角度了解它跟ASC的PYD-PYD 的結合模式是重要的。在本篇論文中,我主要研究PYNOD 的三維核磁共振結構和它的動態,結果顯示其外形是由6 個Helices 構成的桶狀構形,連接H2 和H3 有突出的loop L3。骨架動態數據發現這loop L3 及H3 比其他5 段Helices有相對性較高的彈性。

English Abstract

The innate immune system recruits various transmembrane and cytoplasmic germline-encoded pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMP) motifs of microbial invaders, such as lipopolysaccharides (LPS), peptidoglycan (PGN), flagellin, ds-DNA, and CpG DNA. PAMP-activated receptors then trigger intracellular signaling cascades that lead to a spectrum of host defense reactions. While diverse PAMP motifs are recognized by the leucine-rich repeat (LRR) protein modules present in PRRs, the N-terminal pyrin domain (PYD) of cytoplasmic nucleotide-binding domain and leucine-rich repeat-containing receptors (NLRs) links PAMP-recognition to downstream signaling cascades through specific homotypic interactions. There are 14 members of PYD-containing NLRs (NLRPs) and mutations in several of them have been implicated in numerous human inflammatory disorders. Human PYNOD/NLRP10 is a novel negative regulator of inflammation characterized by the lack of a C-terminal LRR domain. Via its PYD domain, PYNOD suppresses oligomerization of ASC (apoptosis-associated speck-like protein containing a CARD), a critical PYD-containing signaling adaptor protein, which leads to inhibition of caspase-1 activation and caspase-1 mediated maturation of 1L-1β. Owing to its important anti-inflammatory activity, we have sought to elucidate the structural basis of PYD-mediated interaction of PYNOD with ASC. Here I present the structure and dynamics of the human PYNOD PYD, which shows that PYNOD PYD adopts a core six-helix bundle structure with a prominent loop L3 between helices H2 and H3. Backbone 15N relaxation data revealed this L3 loop and the H3 helix display a greater degree of conformational disorder than the other five helices.

Topic Category 生命科學院 > 生化科學研究所
生物農學 > 生物科學
  1. Aganna, E., F. Martinon, et al. (2002). "Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis." Arthritis Rheum 46(9):2445-2452.
  2. Asefa, B., K. D. Klarmann, et al. (2004). "The interferon-inducible p200 family of proteins: a perspective on their roles in cell cycle regulation and differentiation." Blood Cells Mol Dis 32(1): 155-167.
  3. Bae, J. Y. and H. H. Park (2011). "Crystallization and preliminary X-ray crystallographic studies of the PYD domain of human NALP3." Acta Crystallogr Sect F Struct Biol Cryst Commun 67(Pt 11): 1421-1424.
  4. Bax, M. Z. a. A. (2000). "Prediction of Sterically Induced Alignment in a Dilute Liquid Crystalline Phase: Aid to Protein Structure Determination by NMR." J. Am. Chem. Soc.
  5. 122: 3791-3792.
  6. Bedoya, F., L. L. Sandler, et al. (2007). "Pyrin-only protein 2 modulates NF-kappaB and disrupts ASC:CLR interactions." J Immunol 178(6): 3837-3845.
  7. Benko, S., D. J. Philpott, et al. (2008). "The microbial and danger signals that activate Nod-like receptors." Cytokine 43(3): 368-373.
  8. Bouvignies, G., P. Markwick, et al. (2006). "Simultaneous determination of protein backbone structure and dynamics from residual dipolar couplings." J Am Chem Soc 128(47):15100-15101.
  9. Brahms, S. and J. Brahms (1980). "Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism." J Mol Biol 138(2): 149-178.
  10. Cheng, J., A. L. Waite, et al. (2010). "Kinetic properties of ASC protein aggregation in epithelial cells." J Cell Physiol 222(3): 738-747.
  11. Conway, K. E., B. B. McConnell, et al. (2000). "TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human
  12. 79 breast cancers." Cancer Res 60(22): 6236-6242.
  13. de Alba, E. and N. Tjandra (2004). "Residual dipolar couplings in protein structure determination." Methods Mol Biol 278: 89-106.
  14. Ding, Y., L. Wang, et al. (2004). "Antitumor activity of IFIX, a novel interferon-inducible HIN-200 gene, in breast cancer." Oncogene 23(26): 4556-4566.
  15. Dorfleutner, A., N. B. Bryan, et al. (2007). "Cellular pyrin domain-only protein 2 is a candidate regulator of inflammasome activation." Infect Immun 75(3): 1484-1492.
  16. Farrow, N. A., O. Zhang, et al. (1995). "Spectral density function mapping using 15N relaxation data exclusively." J Biomol NMR 6(2): 153-162.
  17. Fernandes-Alnemri, T., J. Wu, et al. (2007). "The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation."
  18. Cell Death Differ 14(9): 1590-1604.
  19. Fox, J. D. and D. S. Waugh (2003). "Maltose-binding protein as a solubility enhancer." Methods Mol Biol 205: 99-117.
  20. Hiller, S., A. Kohl, et al. (2003). "NMR structure of the apoptosis- and inflammation-related NALP1 pyrin domain." Structure 11(10): 1199-1205.
  21. Hornung, V., A. Ablasser, et al. (2009). "AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC." Nature 458(7237): 514-518.
  22. Imamura, R., Y. Wang, et al. (2010). "Anti-inflammatory activity of PYNOD and its mechanism in humans and mice." Journal of immunology 184(10): 5874-5884.
  23. Ishii, K. J., S. Koyama, et al. (2008). "Host innate immune receptors and beyond: making sense of microbial infections." Cell Host Microbe 3(6): 352-363.
  24. Jin, T., A. Perry, et al. (2012). "Structures of the HIN Domain:DNA Complexes Reveal Ligand Binding and Activation Mechanisms of the AIM2 Inflammasome and IFI16
  25. Receptor." Immunity.
  26. Johnstone, R. W. and J. A. Trapani (1999). "Transcription and growth regulatory 80 functions of the HIN-200 family of proteins." Mol Cell Biol 19(9): 5833-5838.
  27. Ladizhansky, V., M. Veshtort, et al. (2002). "NMR determination of the torsion angle psi in alpha-helical peptides and proteins: the HCCN dipolar correlation experiment." J Magn Reson 154(2): 317-324.
  28. Landolfo, S., M. Gariglio, et al. (1998). "The Ifi 200 genes: an emerging family of IFN-inducible genes." Biochimie 80(8-9): 721-728.
  29. Martinon, F., K. Burns, et al. (2002). "The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta." Mol Cell 10(2): 417-426.
  30. Masumoto, J., S. Taniguchi, et al. (1999). "ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells." J Biol Chem 274(48):
  31. 33835-33838.
  32. Moriya, M., S. Taniguchi, et al. (2005). "Role of charged and hydrophobic residues in the oligomerization of the PYRIN domain of ASC." Biochemistry 44(2): 575-583.
  33. Natarajan, A., R. Ghose, et al. (2006). "Structure and dynamics of ASC2, a pyrin domain-only protein that regulates inflammatory signaling." J Biol Chem 281(42):
  34. 31863-31875.
  35. Pinheiro, A. S., C. Eibl, et al. (2011). "The NLRP12 pyrin domain: structure, dynamics, and functional insights." J Mol Biol 413(4): 790-803.
  36. Scott, F. L., B. Stec, et al. (2009). "The Fas-FADD death domain complex structure unravels signalling by receptor clustering." Nature 457(7232): 1019-1022.
  37. Shen, Y. (2009). "TALOS+: A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts." J Biomol NMR. 44(4): 213-223.
  38. Srimathi, T., S. L. Robbins, et al. (2008). "Mapping of POP1-binding site on pyrin domain of ASC." J Biol Chem 283(22): 15390-15398.
  39. Srinivasula, S. M., J. L. Poyet, et al. (2002). "The PYRIN-CARD protein ASC is an activating adaptor for caspase-1." J Biol Chem 277(24): 21119-21122.81
  40. Stehlik, C., M. Krajewska, et al. (2003). "The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-kappa B and pro-caspase-1 regulation."
  41. Biochem J 373(Pt 1): 101-113.
  42. Tschopp, J., F. Martinon, et al. (2003). "NALPs: a novel protein family involved in inflammation." Nature reviews. Molecular cell biology 4(2): 95-104.
  43. Vincentelli, R., S. Canaan, et al. (2004). "High-throughput automated refolding screening of inclusion bodies." Protein Sci 13(10): 2782-2792.
  44. Wagner, G. (1993). "NMR relaxation and protein mobility." Current Opinion in Structural Biology 3: 748-754.
  45. Wang, Y., M. Hasegawa, et al. (2004). "PYNOD, a novel Apaf-1/CED4-like protein is an inhibitor of ASC and caspase-1." International immunology 16(6): 777-786.
  46. Wishart, D. S. and B. D. Sykes (1994). "The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data." J Biomol NMR 4(2): 171-180.
  47. Wishart, D. S., B. D. Sykes, et al. (1992). "The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy."Biochemistry 31(6): 1647-1651.
  48. Wishart, D. S. A. M. N. (1998). "Protein chemical shift analysis: a practical guide."Biochem. Cell Biol. 76: 153-163
  49. Zweckstetter, M. (2008). "NMR: prediction of molecular alignment from structure using the PALES software." Nat Protoc 3(4): 679-690.