Translated Titles

Analysis of Collapse Surfaces for Trusses with Hardening and Softening





Key Words

崩塌載重 ; 崩塌面 ; 極限分析 ; 硬化 ; 軟化 ; 桁架 ; 線性不等式 ; collapse load ; collapse surface ; limit analysis ; hardening ; softening ; truss ; linear inequalities



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

傳統的極限分析有許多的限制,其中在載重形式上會給定單一比例載重,等於將多維的載重空間特化為一維來處理而且限制要單調加載,不能卸載或反覆循環;另外在組成律方面則必須限於剛塑性或完全彈塑性。然而在真實情況中,作用在結構上的載重往往沒有比例關係,為各自獨立的載重,且硬化、軟化的材料在結構物中也比比皆是。因此,在本文中會放鬆以上限制,以處理更接近真實狀況的問題。 極限分析最大的好處為,可以在不需給定路徑的情況下,直接快速地求得崩塌載重。在極限分析的領域中,最常見的作法是結合數學規劃法,列出最佳化問題來求解彈塑性結構的崩塌載重。在高維載重空間中,崩塌載重即是以崩塌面的型式存在,本文認為崩塌面不單單只是最佳化後的數值結果,而是在結構喪失靜不定性後具有跟降伏面對應的模式,意即崩塌面是載重空間的多面體,它的每一個面代表一種崩塌模式, 不但是一種崩塌機構,而且也同時滿足平衡條件與廣義應力允許條件,因此可以由參與該機構的各個桿件的降伏面合成出來。本文即利用此種載重空間中降伏面與崩塌面的關係,定義具有數學、物理意義的機構向量條件式並給出證明,藉由搜索崩塌機構的方式直接求解崩塌面的模式,建立出結構在載重空間中的安全區域,並由硬化、 軟化桁架的數值實例來說明本文的方法。

English Abstract

There are some severe restrictions in the traditional limit analysis. For the load type, the load space is one-dimensional and monotonic by imposing the restriction of uni-directional proportional loading. On the other hand, only can the constitutive law be perfectly elastic, either rigid-perfectly plastic or elastic-perfectly plastic. However, the load space is usually high dimensional in true situation, and the hardening/softening behavior prevails in almost all engineering structures. To deal with these problems, it is important to loose the above restrictions. The greatest advantage of limit analysis is that it can obtain collapse loads directly without giving loading paths. In the field of limit analysis, the most common approach is applying mathematical programming to calculating the collapse loads of elastoplastic structures, and the problem becomes an optimization problem of maximizing the collapse load. Collapse loads form a collapse surface in high dimensional load space; we deem a collapse surface to be not merely numerical results of optimization, but an equivalent model of yield surfaces once the structure in equilibrium loses its static indeterminancy and forms mechanisms. That is, we observe that each piece of a collapse surface represents a collapse mode of the structure and is corresponding to the yield surfaces of those structural members that form a collapse mechanism.Therefore, by using the relationship between the collapse surface and the yield surface in load space, we define the conditions of mechanism vectors which have mathematical and physical meaning. After searching each mechanism, the model of collapse surface can be constructed, and then we can construct the safety region in load space. Finally, some examples for truss structures with hardening and softening are given to verify this method.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
  1. [3] Bremner, D., Fukuda, K., and Marzetta, A., Primal-Dual Methods for Vertex and Facet
  2. Enumeration, Discrete & Computational Geometry, Vol.20, No.3, pp.333-357, 1998.
  3. York, 1988.
  4. reference stress of 3-D structures under multi-loading systems, Engineering Structures,
  5. ing plastic-hinge models by mathematical programming, International Journal of Solids
  6. [8] Cohn, M. Z. and Maier, G., eds., Engineering Plasticity by Mathematical Programming -
  7. Proceedings of the NATO Advanced Study Institute, Pergamon Press, New York, 1977.
  8. [9] Hodge, P. G., Limit analysis with multiple load parameters, International Journal of
  9. [11] Kaneko, I., A parametric linear complementarity problem involving derivatives, Mathe-
  10. [12] Kaneko, I., Piecewise linear elastic-plastic analysis, International Journal for Numerical
  11. [13] Kaneko, I., Complete solutions for a class of elastic-plastic structures, Computer Methods
  12. in Applied Mechanics and Engineering, Vol.21, No.2, pp.193-209, 1980.
  13. Courses and Lectures No.299, International Centre for Mechanical Sciences, Springer-
  14. [15] Maier, G., A quadratic programming approach for certain classes of non linear structural
  15. [16] Maier, G., A matrix structural theory of piecewise linear elastoplasticity with interacting
  16. [17] Maier, G., Grierson, D.E. and Best, M.J., Mathematical programming methods for de-
  17. [18] Maier, G. and Munro, J., Mathematical programming methods in engineering plastic
  18. [20] Maier, G., Garvelli, V. and Cocchetti, G., On direct methods for shakedown and limit
  19. [22] Muscat, M., Mackenzie, D. and Hamilton, R., A work criterion for plastic collapse, In-
  20. ternational Journal of Pressure Vessels and Piping, Vol.80, No.1, pp.49-58, 2003.
  21. [23] Nafday, A. M., Corotis, R. B. and Cohon, J. L., Multiparametric limit analysis of frames.
  22. [24] Nafday, A. M., Corotis, R. B. and Cohon, J. L., Multiparametric limit analysis of frames.
  23. [25] Reinicke, K. M., Ralston, T. D., Plastic limit analysis with an anisotropic, parabolic
  24. yield function, International Journal of Rock Mechanics and Mining Sciences, Vol.14,
  25. [26] Staat, M. and Heitzer, M., LISA - a European project for FEM-based limit and shakedown
  26. [27] Sewell, M. J., Maximum and Minimum Principles - a Unified Approach, with Application,
  27. [28] Tangaramvong, S. and Tin-Loi, F., Limit analysis of strain softening steel frames under
  28. [29] Tangaramvong, S. and Tin-Loi, F., A complementarity approach for elastoplastic analysis
  29. of strain softening frames under combined stresses, Engineering Structures, Vol.30, No.3,
  30. pp.664-674, 2008.
  31. [32] Tin-Loi, F., and Lo, Y. F., Collapse limit surface generation for multiparametric loading,
  32. [33] Tin-Loi, F. and Xia, S. H., Nonholonomic elastoplastic analysis involving unilateral fric-
  33. [34] Tin-Loi, F. and Xia, S. H., Holonomic softening: Models and analysis, Mechanics Based
  34. Design of Structures and Machines, Vol.29, No.1, pp.65-84, 2001.
  35. [35] Yang, W. H., A duality theorem for plastic torsion, International Journal of Solids and
  36. [1] Borkowski, A., On dual approach to piecewise-linear elasto-plasticity. Part I: Continuum
  37. models, Bulletin of the Polish Academy of Sciences, Vol.52, No.4, pp.329-343, 2004.
  38. [2] Borkowski, A., On dual approach to piecewise-linear elasto-plasticity. Part II: Discrete
  39. models, Bulletin of the Polish Academy of Sciences, Vol.52, No.4, pp.345-352, 2004.
  40. [4] Chen, W. F. and Han, D. J., Plasticity for Structural Engineers, Springer-Verlag, New
  41. [5] Chen, H. F. and Shu, D. W., A numerical method for lower bound limit analysis of 3-
  42. D structures with multi-loading systems, International Journal of Pressure Vessels and
  43. Piping, Vol.76, No.2 pp.105-112, 1999.
  44. [6] Chen, H. F., Liu, Y. H., Cen, Z. Z. and Xu, B. Y., On the solution of limit load and
  45. Vol.21, No.6, pp.530-537, 1999.
  46. [7] Cocchetti, G. and Maier, G., Elatic-plastic and limit-state analyses of frames with soften-
  47. and Strucures, Vol.40, No.25, pp.7219-7244, 2003.
  48. Solids and Structures, Vol.6, No.5, pp.661-675, 1970.
  49. [10] Jir’asek, M. and Baˇzant, Z.P., Inelastic Analysis of Structures, Wiley, England, 2002.
  50. matical Programming, Vol.15, No.1, pp.146-154, 1978.
  51. Methods in Engineering, Vol.14, No.5, pp.757-767, 1979.
  52. [14] Lloyd-Smith, D. ed., Mathematical Programming Methods in Structural Plasticity, CISM
  53. Verlag, Wien, 1990.
  54. problems, Meccanica, Vol.3, No.2, pp.121-130, 1968.
  55. yield planes, Meccanica, Vol.1, No.5, pp.54-66, 1970.
  56. formation analysis at plastic collapse, Computers & Structures, Vol.7, No.5, pp.599-612,
  57. 1977.
  58. analysis, Applied Mechanics Reviews, ASME, Vol.35, No.12, pp.1631-1643, 1982.
  59. [19] Maier, G., Lloyd-Smith, D., Mathematical programming applications to engineering plas-
  60. tic analysis: update to November 1985, Applied Mechanics Update 1986, C.R. Steele and
  61. G.S. Springer eds., ASME, New York, pp.377-383, 1986.
  62. analysis, European Journal of Mechanics - A/Solids, Vol.19, pp.79-100, 2000.
  63. [21] Matlab, MATLAB R2009b documentation. MA: The MathWorks, Inc.; 2009.
  64. I: model, Journal of Engineering Mechanics, Vol.114, No.3, pp.377-386, 1988.
  65. II: computations, Journal of Engineering Mechanics, Vol.114, No.3, pp.387-403, 1988.
  66. No.3, pp.147-154, 1977.
  67. analysis, Nuclear Engineering and Design, Vol.206, No.2-3, pp.151-166, 2001.
  68. Cambridge University Press, Cambridge, England, 1986.
  69. pure bending, Journal of Constructional Steel Research, Vol.63, No.9, pp.1151-1159, 2007.
  70. of strain softening frames under combined bending and axial force, Engineering Struc-
  71. tures, Vol.29, No.5, pp.742-753, 2007.
  72. [30] Tangaramvong, S. and Tin-Loi, F., Simultaneous ultimate load and deformation analysis
  73. [31] Tangaramvong, S. and Tin-Loi, F., Limit analysis of elastoplastic frames considering
  74. 2nd-order geometric nonlinearity and displacment constraints, International Journal of
  75. Mechanical Sciences, Vol.51, No.3, pp.179-191, 2009.
  76. Applied Mathematical Modelling , Vol.16, pp.491-497, 1992.
  77. tionless contact as a mixed complementarity problem, Computer Methods in Applied
  78. Mechanics and Engineering, Vol.190, No.35-36, pp.4551-4568, 2001.
  79. Structures, Vol.27, No.15, pp.1981-1989, 1991.
Times Cited
  1. 邢立學(2017)。載重空間的塑性及安定極限面探討。臺灣大學土木工程學研究所學位論文。2017。1-156。 
  2. 林冠宇(2014)。軟化桁架結構組成律、崩塌面與安全載重空間之探討。臺灣大學土木工程學研究所學位論文。2014。1-96。