Title

跨活動斷層橋梁基礎互制行為研究

Translated Titles

The Research on Interaction of Bridge Foundation Across Active Fault

DOI

10.6342/NTU201901420

Authors

李健宏

Key Words

逆斷層 ; 砂箱試驗 ; 分離元素法(PFC3D) ; 斷層與橋梁結構互制 ; thrust fault ; sandbox experiment ; discrete element method(PFC3D) ; fault and bridges interaction.

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2019年

Academic Degree Category

博士

Advisor

林銘郎

Content Language

繁體中文

Chinese Abstract

根據近幾年來世界上幾個著名災害性地震之調查結果,顯示近斷層結構物受到地震破壞之原因,除了強地動之慣性力外,另一主要因素為基盤錯動所導致之上覆土層變形。對於跨越活動斷層的橋梁,其群樁或沉箱基礎位於變形之上覆土層中可能導致損壞,並對上部結構產生損壞。1999年發生之九二一集集大地震(Chi-Chi earthquake)造成中部地區災情慘重,大地於瞬間隆起、橋梁嚴重塌陷,其中有7座橋梁恰好通過斷層,其主體損害造成落橋或嚴重龜裂,顯示跨斷層地震對橋梁結構安全頗具威脅。在本研究中利用小尺度的物理砂箱試驗以及採用離散元素模擬軟體(PFC3D)進行數值分析,了解跨活動斷層橋梁的互制行為。當數值分析可以合理且完整的校核物理試驗結果後,再利用歷史跨越活動斷層的橋梁損壞案例事件校核全尺度數值模型,並進一步預測未來發生一定規模地震之跨活動斷層橋梁行為,以作為規劃設計之參考。 本研究針對逆斷層,使用無凝聚性砂土模擬上覆土層之材料,中空發泡聚乙烯珍珠棉管作為基樁,黏貼應變計測定變形特性,探討逆斷層錯動時,上覆土層變形行為及對群樁基礎之影響,並以砂箱試驗配置與試驗所得之材料參數進行數值分析,以測定邊界條件及輸入參數之合理性。小尺度砂箱試驗與數值分析結果在上覆土層中斷層面的傳播路徑、三角剪切帶的發展、地表變形特徵以及樁帽位移、旋轉和群樁樁身的變形方面具有良好的一致性。斷層面的發展受到群樁的存在和位置的影響而有所改變,且基樁樁帽因而呈現不同程度之旋轉和位移,進而基樁樁身產生不同程度的引致軸力和彎矩,此與上盤土體施加於基樁與樁帽之被動土壓力密切相關,值得注意的是相鄰的基樁呈現出不同的變形行為,位於三角剪切帶之群樁基礎有較大的變形。 全尺度跨活動斷層橋梁數值分析,分別以埤豐橋跨越車籠埔斷層、花蓮大橋跨越嶺頂斷層及田寮三號高架橋跨越車瓜林斷層(或稱龍船斷層)等三個歷史事件校核數值模型;國道四號潭子高架橋(興建中)以及鐵路大甲溪橋(復建工程)等二座橋梁跨越三義斷層作為預測未來發生一定規模地震之案例,提供調適策略之運用研擬。分析成果顯示,橋梁線型與斷層走向相交角度、橋墩及基礎位置、基礎的型式(基樁、沉箱)以及上部結構型式(簡支梁、連續梁)均與斷層作用導致損壞程度有著密切的關係。

English Abstract

Investigations on famous disasters that have occurred worldwide over recent years revealed that the reasons contributing to damages in structures near faults during earthquakes included the strong inertial force caused by strong ground motion as well as overburden deformation caused by basement displacement. For bridges spanning active faults (hereafter referred to as fault-spanning bridges), if their group pile or caisson foundations are located in deformed overburden, said foundations may be damaged and cause damage in the superstructure of the bridges. In this study, a small-scale physical sandbox experiment is performed, and a numerical analysis is conducted using discrete element simulation software PFC3D. As soon as the results of the sandbox experiment is reasonably and completely verified by using the numerical analysis, a full-scale numerical model is verified by using data from historical fault-induced bridge damage incidents to predict the behavior of fault-spanning bridges during future large-scale earthquakes. Such prediction may serve as references to relevant units when planning and designing bridges in the future. To simulate thrust faulting, this study used non-cohesive soil as the material (to form overburden soil) and polyethylene hollow foam tube as the foundation piles. A strain gage is affixed to the soil to measure the deformation characteristics and show the effect of overburden deformation on group pile foundation when thrust fault displacement occurred. A numerical analysis is performed on material parameters (obtained from the sandbox experiment as well as from setting up the experiment) to determine the feasibility of the boundary conditions and input parameters. The fault propagation path in the overburden soil, trishear zone development, surface deformation characteristics, pile cap displacement, and group pile deformation obtained from the sandbox experiment are consistent with those obtained from the numerical analysis. Fault development is influenced by the presence and location of group pile. Additionally, foundation pile cap displayed varying degrees of rotation and displacement, causing the foundation piles to generate varying degrees of axial force and bending moment. Such axial force and bending moment are related to the pressure exerted by lateral soil pressure on foundation piles and the pile cap. Adjacent foundation piles exhibited different deformation behaviors, and group pile foundation in the trishear zone displayed relatively large deformation. This study conducted a full-scale fault-spanning bridge numerical analysis for three disasters, which involved the Pifeng Bridge (spanning the Chelungpu Fault), Hualien Main Bridge (spanning the Lingding Fault), and Tianliao No. 3 Viaduct (spanning the Chekualin Fault, also known as the Lungchuan Fault) to verify the numerical model. Subsequently, this study predicted the behavior of the Tanzi No. 4 Viaduct (under construction) and Dajia River Iron Bridge (under reconstruction), both of which span the Sanyi Fault, if exposed to future large-scale earthquakes, on the basis of which adaptive strategies are devised. The analysis results showed that bridge line type, fault direction and intersection angle, bridge pier and foundation location, foundation type (e.g., foundation piles and caissons), and superstructure type (simple beams and continuous beams) are all closely related to fault-induced damages.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. Agisoft LLC, 2016. Agisoft PhotoScan User Manual professional edition, version 1.2.5.
  2. Anastasopoulos, I., Gazetas,G., ASCE. M., Bransby. M. F., Davies. M. C. R. and EI Nahas. A. 2007. Fault rupture propagation through sand: finite-element analysis and validation through centrifuge experiments. Journal of Geotechnical and Geoenvironmental Engineering 133, 943-958. DOI: 10.1061/ASCE1090-0241,133:8(943).
  3. Anastasopoulos, I., Gazetas,G., ASCE. M., Bransby. M. F., Davies. M. C. R. and EI Nahas. A. 2009. Normal fault rupture interaction with strip foundations. Journal of Geotechnical and Geoenvironmental Engineering 135, 359-370.
  4. Anastasopoulos, I., Gazetas,G., Drosos. V., Georgarakos. T. and Kourkoulis. R. 2008. Design of bridges against large tectonic deformation. Earthquake Engineering and Engineering Vibration 7, 345-368. DOI: 10.1007/s11803-008-1001-x.
  5. Anastasopoulos, I., Kourkoulis,R., Gazetas,G. and Tsatsis, A. 2013. Interaction of piled foundation with a rupturing normal fault. Geotechnique, 63, 1042-1059.
  6. Baziar, M. H., Nabizadeh, A., Lee, C. J. and Hung, W. Y. 2014. Centrifuge modeling of interaction between reverse faulting and tunnel. Soil Dyn. Earthq. Eng. 65, 151-164. http:// dx.doi.org/10.1016/j.soildyn.2014.04.008.
  7. Bray, J. D. 2001. Developing mitigation measures for the hazards associated with earthquake surface fault rupture. Proceedings of Workshop on Seismic Fault-Induced Failures, Tokyo, 55-80.
  8. Bray, J. D. and Kelson, K. I. 2006. Observations of surface fault rupture from the 1906 earthquake in the context of current practice. Earthquake Spectra 22(S2), 69-89.
  9. Bray, J. D., Seed R. B., Cluff, L. S. and Seed, H. B. 1994a. Earthquake fault rupture propagation through soil. Journal of Geotechnical Engineering 120, 543-561.
  10. Cai, Q. P. and Ng, C. W. W. 2016. Centrifuge Modeling of Pile-Sand Interaction Induced by Normal Faulting. Journal of Geotechnical and Geoenviron mental Engineering 142(10): 04016046.
  11. Chang, C. K., Chang, D. W., Tsai, M. H. and Sung, C. Y. 2000. Seismic Performance of Highway Bridges. Earthquake Engineering and Engineering Seismology 2, 55-77.
  12. Chang, Y. Y., Lee, C. J., Hung, W. C., Hung, W. J., Lin, M. L., Hung, W. Y. and Lin, Y. H. 2013. Use of centrifuge experiments and discrete element analysis to model the reverse fault slip. International Journal of Civel Engineering, 11. (2), 79-89.
  13. Chang, Y. Y., Lee, C. J., Hung, W. C., Hung, W. Y., Lin, M. L., Hung, W. J. and Chen Y. H. 2015. Evolution of the surface deformation profile and subsurface distortion zone during reverse faulting through overburden sand. Engineering Geology, 184, 52-70.
  14. Chen, C. H., Chou, H. S., Yang, C. Y., Shieh, B. j. and Kao, Y. H. 2003. Chelungpu Fault Inflicted Damages of Pile Foundations on Fwy Route 3 and Fault Zoning Regulations in Taiwan. JSCE/EqTAP Workshop on Seis mic Fault Induced Failures, Feb. 22, 2003, University of Tokyo, Japan. http://shake.iis.u-tokyo.ac.jp/seismic-fault/workshops/papers-2/Paper-CHEN.pdf.
  15. Chen, W. S., Lee, L. S., Yang, C. C., Liu, L. H. and Chen, Y. C. 2003. Paleoseismic study of the Chelungpu Fault in the Chushan, Nantao County. Field report of Central Geological Survey, Taiwan, No. 92–7. Project No. 5226902000–03–9201.
  16. Chen, W. S., Lee, K. J., Lee, L. S., Streig, A. R., Rubin, C. M., Chen, Y. G., Yang, H. C., Chang, H.C. and Lin, C.W. 2007. Paleoseismic evidence for coseismic growth-fold in the 1999 Chichi earthquake and earlier earthquakes, central Taiwan. Journal of Asian Earth Sciences, 31(3), 204-213.
  17. Cheng, S. N., Yeh, Y. T., & Yu, M. S. 1996. The 1951 Taitung earthquake in Taiwan. Journal of Geological Society of China-Taiwan, 39, 267-286.
  18. Chu, S. S., Lin, M. L., Huang, W. C., Nien, W. T., Liu, H. C. and Chan, P. C. 2015. Simulation of growth normal fault sandbox tests using the 2D discrete element method. Computers & Geosiciences 74, 1-12.
  19. Cole D. A. and Lade, P. V. 1984. Influence zones in alluvium over dip-slip faults. Journal of Geotechnical Engineering 110, 599-615.
  20. Coppersmith, K. J. and Youngs R. R. 2000. Data needs for probabilistic fault displacement hazard analysis. Journal of Geodynamicsm 29, 329-343.
  21. Cundall, P. A. and Strack, O. D. 1979. A discrete numerical granular assemblies. Geotechnique 29 (1), 47–65.
  22. Dong J. J., Wang C. D., Lee C. T., Liao J. J. and Pan Y.W. 2003. The influence of surface ruptures on building damage in the 1999 Chi-Chi earthquake, Engineering Geology 71, pp.157-179.
  23. Gazetas G, Zarzouras O, Drosos V, and Anastasopoulos I. 2015. Bridge-pier caisson foundations subjected to normal and thrust faulting: physical experiments versus numerical analysis. Meccanica 50(2):341-54.
  24. Rasouli, H. and Fatahi, B., 2019. A novel cushioned piled raft foundation to protect buildings subjected to normal fault rupture. Journal of Computers and Geotechnics: 106, 228-248.
  25. Huang, W. J., Chen, W. S., Lee, Y. H., Yang, C. C., Lin, M. L., Chiang, C. S., Lee, J. C. and Lu, S. T. 2016. Insights from heterogeneous structures of the 1999 Mw7.6 Chi-Chi earthquake thrust termination in and near Chushan excavation site, Central Taiwan. Journal of Geophysical Research: Solid Earth 121(1), 339-364.
  26. Hui Y. 2015. Study on groundmotion input and seismic response of bridges crossing active fault [Ph.D. Dissertation]. Nanjing, China: School of Transportation, Southeast University. [in Chinese].
  27. Itasca, 2004, PFC3D manual version 3.1.
  28. Itasca, Consulting Group INC. 2002. PFC3D 3.1 Particle Flow Code in 3 Dimensions. User's Guide, Minneapolis.
  29. Itasca, Consulting Group INC. 2014. PFC3D 5.0 Particle Flow Code in 3 Dimensions. User's Guide, Minneapolis.
  30. Johnson, A. M., Johson, Kajm., Durdella, J., Mete Sözen and Türel Gür. 2002. An emendation of elastic rebound theory:main rupture and adjacent belt of right-lateral distortion detected by Viaduct at Kaynasli, Turkey 12 November 1999 Düzce Earthquake. Journal of Seismology 6, 329–346.
  31. Kawashima K. 2001. Damage of bridges resulting from fault rupture in the 1999 Kocaeli and Duzce, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake. In: Proceedings of the 1st workshop on seismic fault-induced failures-possible remedies for damage to urban facilities. Tokyo, Japan: University of Tokyo Press; 171-90.
  32. Kelson, K. I., Kang, K. H., Page, W. D., Lee, C. T. and Cluff, L. S., 2001. Representative styles of deformation along the Chelungpu Fault fro m the 1999 Chi-Chi (Taiwan) earthquake: Geomorphic characteristics and responses of man-made structures. Bulletin Seis molgical Society America 91, 5, 930-952.
  33. Kosa K, Tazaki K, Yamaguchi E. 2001. Mechanism of damage to Shiwei Bridge caused by 1999 Chi-Chi earthquake. In:Proceedings of the 1st workshop on seismic fault-induced failures-possible remedies for damage to urban facilities. Tokyo, Japann: University of Tokyo Press, 155-60.
  34. Lawson A. C. and Reid H. F. The California earthquake of April 18, 1906:Report of the state earthquake investigation commission. Publication no. 87. I. Washington, DC: Carnegie Institution of Washington; 1908.
  35. Lee, J. C., Chu, H. T., Angelier, J., Chan, Y. C., Hu, J. C., Lu, C. Y. and Rau, R. J. 2002. Geometry and structure of northern surface ruptures of the 1999 Mw = 7.6 Chi‐Chi Taiwan earthquake:Influence from inherited fold belt structures. Journal of Structural Geology 24, 173-192.
  36. Lin, M. L., Chung, C. F. and Jeng, F. S. 2006. Deformation of overburden soil induced by thrust fault slip. Engineering Geology 88, 70-89.
  37. Lin, M. L., Chung, C. F., Jeng, F. S. and Yao, T. C. 2007. The deformation of overburden soil induced thrust faulting and its impact on underground tunnels. Engineering Geology 92, 110-132.
  38. Lin, M. L., Chung, C. F. and Jeng, F. S. 2006a. Deformation of overlying soil induced by thrust fault slip. Journal of Engineering Geology 88, 70-89.
  39. Loli, M., Kourkoulis, R. and Gazetas, G. 2018. Physical and numerical modeling of hybrid foundations to mitigate seismic fault rupture effects. Journal of Geotechnical and Geoenviron mental Engineering 144(11). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001966.
  40. Pamuk, A., Kalkan, E. and Ling, H. I. 2005. Structural and geotechnical impacts of surface rupture on highway structures during recent earthquakes in Turkey. Soil Dyn EarthqEng 25(7):581–9.
  41. Tazoh T. Ohtsuki A. Aoki T. Mano H. Isoda K. Iwamoto T. Arakawa T. Ishihara T. and Ookawa M. 2002. A New Pile-head Device for Decreasing Construction Costs and Increasing the Seismic Performance of Pile Foundations, and Its Application to Structures, Proc. 12th European Conference on Earthquake Engineering, Paper No. 720, Elsevier Science Ltd.
  42. Ulusay, R., Aydan, R. and Ha mada, M. 2001. The behaviour of structure built on active fault zones: examples from the recent earthquakes of Turkey. Proceeding of Workshop on Seis mic Fault-Induced Failures, Tokyo, 1-26.
  43. Wells, D. L. and Coppersmith, K. J. 1994. New Empirical Relationships among Magnitude, Rupture length, Rupture Width, Rupture Area, and Surfae Displacement. Bulletin of the Seismological Society of America 84, 4, 974-1002.
  44. Wu, L. C., Li, C. H., Chan, P. C. and Lin, M. L. 2017. The Deformation of Overlying Soil and Interaction with Pile Foundations of Bridges Induced by Normal Faulting. 2017 EGU General Asse mbly Conference, Vienna, Austria.
  45. Yang S. and Mavroeides, G. P. 2018. Bridges crossing fault rupture zones: A review. Journal of Soil Dynamics and Earthquake Engineering 113, 545-571.
  46. Youngs, R. R. 2003. A methodology for Probabilistic Fault Displacement Hazard Analysis (PFDHA). Earthquake Spectra 19, 191-219.
  47. Zhao B. and Taucer F. 2010. Performance of infrastructure during the May 12, 2008 Wenchuan earthquake in China. Journal of Earthquake Engineering 14(4) :578–600.
  48. 中興工程顧問股份有限公司(2015)國道4號臺中環線豐原大坑段、臺中生活圈2號線東段及4號線北段工程-替代方案可行性研究及綜合規劃工作「大地工程調查紀實與評估報告」初稿。
  49. 日本道路協会(1997)道路橋の耐震設計に関する資料,丸善出版,日本。
  50. 交通部(2012)國道3號田寮3號高架橋及中寮隧道安全檢測、監測技術服務,總結成果報告書,第二版。
  51. 交通部公路總局第四區養護工程處(2010)臺9線294k玉里大橋改線(建)評估-池上斷層調查成果報告。
  52. 朱聖心(2014)生長正斷層錯動引致覆土層剪切帶發展之研究,博士論文,國立臺灣大學土木工程學研究所,臺北。
  53. 行政院公共工程委員會(2002)跨越活動斷層橋梁規劃設計方式之研究,行政院公共工程委員會專案研究計畫,研究報告189。
  54. 吳杰祐(2008)逆斷層作用與土層內樁基礎之互制關係,碩士論文,國立臺灣大學土木工程學研究所,臺北。
  55. 吳亮均(2017)正斷層錯動引致上覆土層變形及其對橋梁上部結構型式及樁基礎互制之研究,碩士論文,臺灣大學土木工程學研究所,共116頁,臺北。
  56. 吳亮均、李健宏、詹佩臻、劉桓吉、林銘郎(2017)運用分離元素法數值分析工具模擬國道三號名間高架橋受集集地震斷層錯動引致斷樁行為,大地技師,第15期,第34 - 41頁。
  57. 呂貞怡(2015)以個別元素法界定凝聚性覆土材料於正斷層之地表及土中變形帶,碩士論文,國立臺灣大學土木工程學研究所,臺北。
  58. 李錫堤、康耿豪、鄭錦桐、廖啟雯(2000)921集集大地震之地表破裂及地盤變形現象,地工技術,第81期,第5-18頁。
  59. 沈淑敏、張瑞津、楊貴三(2006)活動構造地形判釋及資料建置分析總報告,經濟部中央地質調查所報告,共105頁。
  60. 周鴻升、楊清源、謝百鍾、余明山、高耀宏(2000)南投地區地工震災調查與分析,地工技術,第81期,第69-84頁。
  61. 林呈及孫洪福(2000)見證921集集大地震,麥格羅希爾,臺北。
  62. 林啟文、張徽正、盧詩丁、石同生、黃文正(2000)臺灣活動斷層概論,五十萬分之一臺灣活動斷層圖說明,第二版,經濟部中央地質調查所特刊,第13號,共122頁。
  63. 林啟文、陳文山、劉彥求、陳柏村(2009)臺灣東部與南部的活動斷層。經濟部中央地質調查所特刊第 23 號。
  64. 林啟文、游鎮源、洪國騰、周稟珊(2012)臺灣南部臺南-高雄泥岩區的地質構造研究,經濟部中央地質調查所彙刊,第二十五號,第143-174頁。
  65. 林啟文、盧詩丁、石同生、林偉雄、劉彥求、陳柏村 (2008) 臺灣中部的活動斷層二萬五千分之一活動斷層條帶地質圖說明書,經濟部中央地質調查所特刊,第21號,共148頁。
  66. 林銘郎、鄭富書、王鴻基、王景平、鍾春富、張芳銘、蔡維哲、許永欣、黃俊傑(2004),台北斷層引致之上覆土層變形及其對潛盾隧道之影響,嚴慶齡工業研究中心研究報告,亞新工程顧問公司委託。
  67. 柳鈞元(2019)斜移斷層錯動引致上覆土層同震變形行為及對淺基礎結構物之影響,碩士論文,國立臺灣大學土木工程學研究所,臺北。 
  68. 翁培軒(2016)平移斷層錯動引致凝聚性覆土地表變形與淺基礎變位特性探討,碩士論文,國立臺灣大學土木工程學研究所,臺北。
  69. 常田賢一、渡邉武、平石浩光(2005)道路橋における活断層変位対策の検討,Proc. 28th JSCE Earthquake Engineering Symposium,大阪。
  70. 粘為東(2010)以PFC2D模擬砂土直剪實驗中之剪動帶及應用之研究,碩士論文,國立臺灣大學土木工程學研究所,臺北。
  71. 陳文山、林益正、顏一勤、楊志成、紀權窅、黃能偉、林啟文、侯進雄、劉彥求、林燕慧、石同生(2008)從古地震研究與 GPS 資料探討縱谷斷層的分段意義,經濟部中央地質調查所特刊,第二十號,第165-191頁。
  72. 陳正旺(2005)車籠埔斷層周圍岩石力學特性之初探,碩士論文,臺灣大學土木工程研究所,台北。
  73. 陳俊价(2008)古亭坑層泥岩含水量對力學素性影響之研究,碩士論文,成功大學土木工程研究所,臺南。
  74. 楊宗翰(2016)具不同上部結構之樁基礎受振行為,碩士論文,國立中央大學土木工程學系,共316頁,桃園。
  75. 經濟部中央地質調查所(2012)2012年版台灣活動斷層分佈圖,中央地質調查所特刊26號。
  76. 經濟部中央地質調查所(2014)圖幅第五十六號-旗山,五萬分之一臺灣地質圖。
  77. 經濟部中央地質調查所(2015)活動斷層地質敏感區劃定計畫書(F0010三義斷層)。
  78. 經濟部中央地質調查所(2016)活動斷層地質敏感區劃定計畫書(F0011米崙斷層)。
  79. 經濟部中央地質調查所(2018)20180206花蓮地震地質調查報告,https://www.moeacgs.gov.tw/info/view.
  80. 詹佩臻(2017)斜移斷層引致上覆土層變形行為之研究,博士論文,國立臺灣大學土木工程學研究所,共161頁,臺北。
  81. 臺灣世曦工程顧問股份有限公司(2013)既有鐵路橋梁耐震及耐洪能力之提升-以大甲溪橋換底工法為例,中華技術,第99期,第168-177頁。
  82. 劉彥求與李奕亨(2006)三義斷層於大甲溪兩岸剖面與淺層震測結果比對分析。2006年臺灣地區地球物理學術研討會摘要集,第97頁。
  83. 蔣佳興(2006)正斷層錯移對上覆砂土層之變形行為探討,碩士論文,國立臺灣大學土木工程學研究所,臺北。
  84. 謝承恩、范書睿、林彥廷、黃文正、羅偉(2016)無人飛行載具搭載數位相機於地質構造判釋之應用,航測及遙測學刊,第二十一卷,第4期,第257-269頁。
  85. 鍾春富(2007)逆斷層錯動引致上覆土層變形行為及對結構物影響之研究,博士論文,國立臺灣大學土木工程學研究所,共282頁,臺北。
  86. 鍾春富,林銘郎(2004)機率式斷層位移危害度分析初探,岩盤工程研討會論文集,第216-213頁,淡水。
  87. 鍾春富,林銘郎(2006)機率式斷層位移危害度分析-以山腳斷層為例,岩盤工程研討會論文集,第631-640頁,台南。