Title

西北太平洋上大尺度環境與颱風特性的關係

Translated Titles

Association of typhoon characteristics with large-scale environment over the western North Pacific

DOI

10.6342/NTU.2010.01084

Authors

黃筱晴

Key Words

颱風移動速度 ; 颱風強度 ; 颱風移動方向 ; 年際變化 ; 西北太平洋 ; yphoon translation speed ; typhoon intensity ; typhoon translation direction ; interannual variation ; the Western North Pacific

PublicationName

臺灣大學大氣科學研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

周佳;林依依

Content Language

繁體中文

Chinese Abstract

在西北太平洋上,颱風是一重要的劇烈天氣現象,而透過大尺度環境場中的氣候因子與海洋因素,在動力機制與熱力機制的驅動下,將會對颱風特徵帶來影響。隨著全球暖化日益嚴重,大尺度環境場也會隨之改變,為此,本研究除了對長期氣候場中颱風對環境場的影響做討論之外,也進一步檢視其年際變化上的情形,以瞭解大尺度環境場如何影響颱風的特徵,特別是移動速度,進而能提供一些瞭解颱風因全球暖化後可能產生改變的資訊。 颱風移動速度的空間分布上,在長期氣候平均場中,30°N 以南在季風槽伸入之處的颱風移動速度最慢。而年際變化上,強冷年在季風槽上颱風的移動速度大致會變快,太平洋副熱帶高壓脊上則變慢;強暖年相反,但主要區域有些許改變。並且不論是長期氣候平均或年際變化上,在 30°N 以北移動速度皆與中層(500hPa)重力位高度場梯度有關,即梯度較大(小)且環流較強(弱)時,颱風移動速度較快(慢);而在 30°N 以南則與低層(925hPa)重力位高度場梯度有關,即當季風槽變弱(強),氣壓梯度變大(小)時,颱風的移動速度會變快(慢)。 颱風強度的空間分布上,在長期氣候平均場中,最強處會落在太平洋副熱帶高壓脊與季風槽之間。而年際變化上,強冷年季風槽西退處的颱風強度會減弱;強暖年在季風槽與太平洋副熱帶高壓脊間的颱風強度會增強。並且不論是長期氣候平均或年際變化,主要皆會受到垂直風切場大小的影響,即垂直風切較小時,颱風的強度較容易增強。而颱風強度與海水溫度之間則是颱風強度較強的情形大都發生在海水溫度較高的區域,但不具絕對一對一關係,且在年際變化上兩者的變化會呈反比,代表海水溫度會受到颱風的影響。另外,在長期平均場中還可以看到颱風強度對重力位高度場的影響,即颱風強度的增加,會使中低層重力位高度場減少,高層重力位高度場增加。 最後,颱風移動方向的空間分布上,在長期氣候平均場中,30°N 以南颱風朝西北方移動,在約 30°N 處向北轉後,再轉朝東北方移動。而在年際變化上,強冷年颱風呈現往北轉向者較多,使南北向分量增強;強暖年颱風向西繼續移動者較多,使東西向分量增強。並且不論是長期氣候平均或年際變化,主要皆會受到太平洋副熱帶高壓環流的影響,即太平洋副熱帶高壓較強(弱)且向西延伸(向東退)時,颱風會呈較偏東西向(南北向)的移動。

English Abstract

Typhoon is an important severe weather phenomenon over the Western North Pacific. Through large-scale environmental field of climatic and sea oceanic factors, mechanical and thermal mechanism would have impact on typhoon characteristics. As global warming becomes seriously, large-scale environmental field may also change. This research would discuss about the large-scale environmental field effects for typhoon characteristics during long-term climatology. Also the interannual variations of the large-scale environmental field, especially for typhoon translation speed, would be discussed. And then we also want to get more information to know how the typhoon will change under global warming. According to long-term climatology analysis, typhoon has the slowest translation speed on the monsoon trough, South of 30°N. In the aspect of interannual variance, the typhoon translation speed would be faster on the monsoon trough and would be slower on the subtropical ridge during strong cold years. Process would be opposite during strong warm years. Either long-term climatology or interannual variations, typhoon translation speed may associate with mid-level (500hPa) geopotential height gradient of North of 30°N, and associates with low-level (925hPa) geopotential height gradient of South of 30°N, which means typhoons move faster (slow) when the large (small) gradient. According to long-term climatology analysis, typhoon intensity is strongest among the Pacific subtropical ridge and monsoon trough. In the aspect of interannual variance, the typhoon intensity will weaken with monsoon trough move western during strong cold years, and enhance among the Pacific subtropical ridge and monsoon trough during strong warm years. Either long-term climatology or interannual variations, the main effect of typhoon intensity is vertical wind shear, and also have a relationship between sea temperatures, especially reverse on interannual. So we also know that not only sea temperatures will affect typhoon intensity, but also typhoon intensity will affect the sea temperatures. In addition, strong typhoon intensity will decrease mid-level and low-level geopotential height and increase high-level geopotential height. According to long-term climatology typhoon translation direction is northwestward of South of 30°N, northward around 30°N and northeastward of North of 30°N. In the aspect of interannual variance, typhoon translation direction will be more northward when the subtropical ridge weakens during strong cold years and will be more westward when the subtropical ridge enhances during strong warm years.

Topic Category 基礎與應用科學 > 大氣科學
理學院 > 大氣科學研究所
Reference
  1. Adem, J., 1956: A series solution for the barotropic vorticity equation and its application in the study of atmospheric vortices. Tellus, 8, 364-372.
    連結:
  2. Anthes, R. A., 1982: Tropical cyclones: Their evolution, structure and effects. Amer. Meteor. Soc., 208 pp.
    連結:
  3. Bengtsson, L., M. Botzet, and M. Esch, 1996: Will greenhouse gas induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 57-73.
    連結:
  4. Black, M. L., Gamache, J. F., Marks Jr., F. D., Samsury, C. E., and Willoughby H. E., 2002: Eastern Pacific hurricanes Jimena of 1991 and Olivia of 1994: The effects of vertical shear on structure and intensity. Mon. Wea. Rev., 130, 2291-2312.
    連結:
  5. Briegel, L. M. and W. M. Frank, 1997: Large-scale influences on tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 1397-1413.
    連結:
  6. Broccoli, A. J., and S. Manabe, 1990: Can existing climate modes be used to study anthropogenic changes in tropical cyclones climate? Geophys. Res. Lett., 17, 1917-1920.
    連結:
  7. Camargo, S. J. and A. H. Sobel, 2005: Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996-3006.
    連結:
  8. Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007: Cluster analysis of typhoon tracks. Part I: General properties. J. Climate, 20, 3635-3653.
    連結:
  9. Camargo, S. J., A. W. Robertson, S. J. Gaffney, P. Smyth, and M. Ghil, 2007: Cluster analysis of typhoon tracks. Part II: Large-scale circulation and ENSO. J. Climate, 20, 3654-3676.
    連結:
  10. Carr, L. E. and R. L. Elsberry, 1990: Observational evidence for predictions of tropical cyclone propagation relative to environmental steering. J. Atmos. Sci., 47, 542-546.
    連結:
  11. Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Nin ̃o/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599-606.
    連結:
  12. Chan, J. C. L., 2000: Tropical cyclone activity over the western North Pacific associated with El Nin ̃o and La Nin ̃a events. J. Climate, 13, 2960-2972.
    連結:
  13. Chan, J. C. L., 2005: The physics of tropical cyclone motion. Annu. Rev. Fluid Mech., 37, 99-128.
    連結:
  14. Chan, J. C. L. and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 4590-4602.
    連結:
  15. Chan, J. C. L. and W. M. Gray, 1982: Tropical Cyclone Movement and Surrounding Flow Relationships. Mon. Wea. Rev., 110, 1354-1374.
    連結:
  16. Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the north-west Pacific. J. Climate, 15, 2934-2944.
    連結:
  17. Chu, P. S., 2004: ENSO and tropical cyclone activity, in hurricanes and typhoons: Past, present, and potential, edited by R.J. Murnane and K. B. Liu, pp297-332, Columbia University Press, New York.
    連結:
  18. Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143-1155.
    連結:
  19. Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969-3976.
    連結:
  20. Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665-669.
    連結:
  21. Emanuel, K. A., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843-858.
    連結:
  22. Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686-688.
    連結:
  23. Frank, W. M., and E. A. Ritchie, 1999: Effects of environmental flow upon tropical cyclone structure. Mon. Wea. Rev., 127, 2044-2061.
    連結:
  24. Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249-2269.
    連結:
  25. Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nun ̃ez, and W. M. Gray, 2001: The recent increase in Atlantic hurricane activity: Causes and implications., Science, 293, 474-479.
    連結:
  26. Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669-700.
    連結:
  27. Gray, W. M., 1977: Tropical cyclone genesis in the western North Pacific. J, Meteor. Soc. Japan (Ser. II), 55, 465-482.
    連結:
  28. Harr, P. A. and R. L. Elsberry, 1991: Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Mon. Wea. Rev., 119, 1448-1468.
    連結:
  29. Harr, P. A. and R. L. Elsberry, 1995: Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Wea. Rev., 123, 1225-1246.
    連結:
  30. Harr, P. A. and R. L. Elsberry, 1995: Large-scale circulation variability over the tropical western North Pacific. Part II: Persistence and transition characteristics. Mon. Wea. Rev., 123, 1247-1268.
    連結:
  31. Henderson-Sellers, A. and Coauthors, 1998: Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Amer. Meteor. Soc., 79, 19-36.
    連結:
  32. Ho, C. H., J. J. Baik, J. H. Kim, D. Y. Gong, and C. H. Sui, 2004: Interdecadal changes in summertime typhoon tracks. J. Climate, 17, 1767-1776.
    連結:
  33. Ho, C. H., J. H. Kim, J. H. Jeong, H. S. Kim, and D. Chen, 2006: Variations of tropical cyclone activity in the south Indian Ocean: ENSO and MJO effects. J. Geophys. Res.,111, D22101, doi:10.1029/2..6JD007289.
    連結:
  34. Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328-342.
    連結:
  35. Holland, G. J., 1995: Scale interaction in the western Pacific monsoon. Meteor. Atmos. Sci., 56, 57-79.
    連結:
  36. Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519-2541.
    連結:
  37. Hoyos, C. D., P. A. Agudelo, P. J. Webster, and J. A. Curry, 2006: Deconvolution of the factors contributing to the increasing global hurricane intensity. Science, 312, 94-97.
    連結:
  38. Houze, R. A. Jr., S. S. Chen, B. F. Smull, W. C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall replacement. Science, 315, 1235-1239.
    連結:
  39. Hsu, H. H., C. H. Hung, A. K. Lo, C. C. Wu, and C. W. Hung, 2008: Influence of tropical cyclones on the estimation of climate variability in the tropical western North Pacific. J. Atmos. Sci., 21, 2960-2975.
    連結:
  40. Kasahara, A. and G. W. Platzman, 1963: Interaction of a hurricane with the steering flow and its effect on the hurricane trajectory. Tellus, 15, 321-335.
    連結:
  41. Klotzbach, P. J. 2006: Trends in global tropical cyclone activity over the past twenty years (1986-2005). Geophys. Res. Lett., 33, L10805, doi:10.1029/2006GL025881.
    連結:
  42. Knutson, T. R., and R. E. Tuleya, 2001: Impact of CO2-induced warming on hurricane intensities and simulated in a hurricane model with ocean coupling. J. Climate, 14, 2458-2468.
    連結:
  43. Knutson, T. R., and R. E. Tuleya, 2004: Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Climate, 17, 3477-3495.
    連結:
  44. Knutson, T. R., R. E. Tuleya, and Y. Kurihara, 1998: The recent increase in Atlantic hurricane activity: Causes and implications. Science, 279, 1018-1020.
    連結:
  45. Krishnamurti, T. N., W. Han, B. Jha, and H. S. Bedi, 1998: Numerical prediction of hurricane opal. Mon. Wea. Rev., 126, 1347-1363.
    連結:
  46. Lander, M. A., 1994: Description of a monsoon gyre and Its effects on the tropical cyclones in the western North Pacific during August 1991. Wea. Forecasting, 9, 640-654.
    連結:
  47. Lander, M. A., 1996: Specific tropical cyclone track types and unusual tropical cyclone motions associated with a reverse-oriented monsoon trough in the western North Pacific. Wea. Forecasting, 11, 170-186.
    連結:
  48. Landsea, C. W., B. A. Harper, K. Hoarau, and J. A. Knaff, 2006: Can we detect trends in extreme tropical cyclones? Science, 313, 452-454.
    連結:
  49. Lin, I-I, C. C. Wu, K. A. Emanuel ,I. H. Lee, C. R. Wu, and I. F. Pun, 2005: The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 2635-2649.
    連結:
  50. Lin, I-I, C. C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper ocean thermal structure and the western North Pacific categoty-5 typhoon, Part I: Ocean features and categoty-5 typhoon’s intensification. Mon. Wea. Rev., 136, 3288-3306.
    連結:
  51. Lin, I-I, I. F. Pun, and C. C. Wu, 2009: Upper ocean thermal structure and the western North Pacific category-5 typhoons Part II: Dependence on translation speed, Mon. Wea. Rev., 137, 3744-3757.
    連結:
  52. Lin, I-I, W. T. Liu, C. C. Wu, J. C. H. Chiang, and C. H. Sui, 2003: Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett., 30, 1311, odi:10.1029/2002GL015674.
    連結:
  53. Lin, I-I, W. T. Liu, C. C. Wu, G. T. F. Wong, C. Hu, Z. Chen, W. D. Liang, Y. Yang, and K. K. Liu, 2003: New evidence for enhanced ocean primary production triggered by tropical cyclone. Geophys. Res. Lett., 30, 1718, doi:10.1029/2003GL017141.
    連結:
  54. Liu, K. S. and J. C. L. Chan, 2002: Synoptic flow patterns associated with small and large tropical cyclones over the western North Pacific. Mon. Wea. Rev., 130, 2134-2142.
    連結:
  55. Mainelli, M. M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of oceanic heat content estimation to operational forecasting of recent Atlantic category 5 hurricanes. Wea. Forecasting, 23(1): 3-16.
    連結:
  56. Matsuura, T., M. Yumoto, and S. Lizuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dyn., 21, 105-117.
    連結:
  57. McBride, J. L., 1981: Observational analysis of tropical cyclone formation. Part I: Basic definition of data sets. J. Atmos. Sci., 38, 1117-1131.
    連結:
  58. McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 1132-1151.
    連結:
  59. Merril, R., 1988: Characteristics of the upper-tropospheric environmental flow around hurricanes. J. Atmos. Sci., 45, 1665-1677.
    連結:
  60. Montgomery, M. T., M. M. Bell, S. D. Aberson, and M. L. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimates. Bull. Amer. Meteor. Soc., 87, 1335-1347.
    連結:
  61. Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133, 3644-3660.
    連結:
  62. Pielke, R. A., Jr., C. Landsea, M. Mayfield, J. Laver, and R. Pasch, 2005: Hurricanes and global warming. Bull. Amer. Meteor. Soc., 86, 1571-1575.
    連結:
  63. Ritchie, E. A. and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the cestern Pacific. Mon. Wea. Rev., 127, 2027-2043.
    連結:
  64. Shapiro, L. J. and S. B. Goldenberg, 1998: Atlantic sea surface temperatures and tropical cyclone formation. J. Climate, 11, 578-590.
    連結:
  65. Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366-1383.
    連結:
  66. Trenberth, K., 2005: Uncertainty in hurricanes and global warming. Science, 308, 1753-1754.
    連結:
  67. Tu, J. Y. C. Chou, and P. S. Chu, 2009: The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific-east Asian climate change. J. Climate, 22, 3617-3628.
    連結:
  68. Tuleya, R. E. and Y. Kurihara, 1981: A numerical study on the effects of environmental flow on tropical storm genesis. Mon. Wea. Rev., 109, 2487-2506.
    連結:
  69. Vecchi, G. A., and B. J. Soden, 2007: Effects of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450(7172), 1066-1070.
    連結:
  70. Vimont, D. J., and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, doi:10.1029/2007GL029683.
    連結:
  71. Walsh, K., 2004: Tropical cyclones and climate change: Unresolved issue. Climate Res., 27, 77-83.
    連結:
  72. Walsh, K. J. E., and B. F. Ryan, 2000: Tropical cyclone intensity increase near Australia as a result of climate change. J. Climate, 13, 3029-3036.
    連結:
  73. Walsh, K. J. E., and J. J. Katzfey, 2000: The impact of climate change on the poleward movement of tropical cyclone-like vortices in a regional climate model. J. Climate, 13, 1116-1132.
    連結:
  74. Wang, B. and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643-1658.
    連結:
  75. Webster, P. J., G. J. Holland, J. A. Curry, and H. R. Chang, 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844-1846.
    連結:
  76. Wong, M. L. M. and J. C. L. Chan, 2004: Tropical cyclone intensity in vertical wind shear. J. Atmos. Sci., 61, 1859-1876.
    連結:
  77. Wu, C. C., C. Y. Lee, and I-I Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3568-3578.
    連結:
  78. Wu, C. C. and K. A. Emanuel, 1995: Potential vorticity diagnostics of hurricane movement. Part 1: A case study of hurricane Bob (1991). Mon. Wea. Rev., 123, 69-92.
    連結:
  79. Wu, L. and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 1686-1698.
    連結:
  80. Wu, L., B. Wang, and S. A. Braun, 2005: Impacts of air-sea interaction on tropical cyclone track and intensity. Mon. Wea. Rev., 133, 3299-3314.
    連結:
  81. Wu, L. Z., B. Wang, and S. Geng, 2005: Growing typhoon influence on east Asia. Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.
    連結:
  82. Black, P. G., E. A. D’ Asaro, W. M. Drennan, J. R. French, P. P. Niller, T. B. Sanford, E. J. Terrill, E. J. Walsh, and J. A. Zhang, 2007: Air-sea exchange in hurricanes. Bull. Amer. Meteor. Soc., 88, 357-374.
  83. Gallina, G. M., and C. S. Velden, 2002: Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. Extended Abstracts. 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 172-173.
  84. Gray, W. M., 1975: Tropical cyclone genesis. Atmospheric Science Paper 234, 121 pp. [Available from Dept. of Atmos. Sci., Colorado State University, Fort Collins, CO 80523.]
  85. Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the general circulation. Meteorology over the Tropical Oceans, D. B. Shaw, Ed., Royal Meteorological Society, 155-218.
  86. Gray, W. M. and P. J. Klotzbach, 2005: Summary of 2005 Atlantic tropical cyclone activity and verification of author’s seasonal and monthly forecasts, report, 48 pp., [Available from Dept. of Atmos. Sci., Colorado State University, Fort Collins, colo.]
  87. Haarsma, R. J., J. F. B. Mitchell, and C. A. Senior, 1993: Tropical disturbances in a GCM. Climate Dyn., 8, 247-257.
  88. Sandgathe, S. E., 1987: Opportunities for tropical cyclone motion research in the northwest Pacific region. Naval Postgraduate School Paper NPS-63-87-006, 72 pp. [Available from Dept. of Meteorology, Naval Postgraduate School, Monterey, CA 93943.]
  89. Watson, R. T., and the Core Writing Team. Eds., 2001: Climate Change 2001: Synthesis Report. Cambridge University Press, 398 pp.
  90. Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp. [Available from U.S. Department of Commerce, NOAA/NESDIS, 5200 Auth Rd., Washington, DC 20223.]
Times Cited
  1. 許牧豪(2011)。雙眼牆颱風與西南季風探討。臺灣大學大氣科學研究所學位論文。2011。1-105。