Title

以擴增實境結合BIM輔助工地之鋼筋查驗

Translated Titles

Development of an On-site Rebar Inspection System using AR and BIM Technologies

DOI

10.6342/NTU201900499

Authors

許皓威

Key Words

現地查驗 ; 鋼筋查驗 ; 擴增實境 ; 建築資訊塑模 ; on-site inspection ; rebar inspection ; Augmented Reality ; Building Information Modelling

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2019年

Academic Degree Category

碩士

Advisor

謝尚賢

Content Language

英文

Chinese Abstract

隨著建築資訊塑模技術的發展(BIM),它的優勢在建築生命周期當中逐漸展現,特別是在設計階段時。目前在施工階段主要仍以平面圖作為使用形式以進行資訊的傳遞和檢索,然而平面圖因為缺少立體資訊,會產生資訊衝突的問題,因此需要有一套系統來驗證建築資訊塑模在施工階段使用的效益,本研究以現地鋼筋查驗作業為目標,開發一套使用建築資訊塑模及擴增實境技術之系統。該系統讓使用者無需透過平面圖和測量工具來進行鋼筋查驗。此系統中包含了追蹤模組,查驗模組以及互動模組。追蹤模組使用了Google ARCore的特徵描述器技術來進行模型的定位。查驗模組根據查驗項目所需的參數,將模型轉化為兩種不同的形式來輔助,並分別針對尺寸和間距查驗。互動模組則是設計來支援其他模組和整個查驗作業。本系統實作於行動裝置上,並以遊戲引擎開發。本研究使用預鑄樑之鋼筋進行查驗測試,用以比對傳統查驗方法。測試項目包含了需要高準確率的鋼筋尺寸,以及允許誤差值的鋼筋間距。結果表明此系統需花較多時間於尺寸查驗,而間距查驗只需傳統方法的一半時間。本研究預期此系統能透過驗證其效率及實用性來改善建築資迅塑模於現地鋼筋查驗的使用。

English Abstract

With the development of Building Information Modeling (BIM), this technology gradually shows its strength in the building life cycle, especially during design phase. However, during construction phase, 2D drawing is still the primary form used for information retrieval and transmission. The problem of 2D drawing is information confliction because of the lack of one dimension. An on-site BIM-based system is required to evaluate the use of BIM during construction phase. This research focuses on the on-site rebar inspection work to develop the system using BIM and Augmented Reality (AR). It allows the user to inspect rebars without 2D drawings and measuring tool. This system includes the tracking module, the inspection module, and the interaction module. The tracking module accounts for the registration of models by using feature descriptor technique from Google ARCore. The inspection module transforms BIM models into two forms based on the parameters used in size inspection and spacing inspection. The interaction module is designed to support other modules and inspection works. This system is implemented on a mobile device using a game engine. An inspection test is conducted on the rebar of precast beam to compare manual measuring with this system. The tasks of test include inspections of size and spacing. The former task needs high accuracy and the latter task allows deviation. The result shows that the system takes more time than the traditional method for the size task, but it saves half of the time for the spacing task. The system is expected to improve the use of BIM for on-site inspection work through the evaluation of effectiveness and feasibility.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. [1] Public Construction Commission Executive Yuan construction inspection reference, http://lawweb.pcc.gov.tw/Download.ashx?FileID=11314, Accessed: 12/12/2018.
  2. [2] Webster, Anthony & Feiner, Steven & Macintyre, Blair & Massie, William & Krueger, Theodore. (2000). Augmented Reality in Architectural Construction, Inspection, and Renovation. Proceedings of 1996 ASCE Congress on Computing in Civil Engineering.
  3. [3] S. K. Ong, M. L. Yuan & A. Y. C. Nee (2008) Augmented reality applications in manufacturing: a survey, International Journal of Production Research, 46:10, 2707-2742.
  4. [4] Xiangyu Wang, Mi Jeong Kim, Peter E.D. Love, Shih-Chung Kang, Augmented Reality in built environment: Classification and implications for future research,
  5. Automation in Construction, Volume 32, 2013, Pages 1-13, ISSN 0926-5805.
  6. [5] P. Fite-Georgel, "Is there a reality in Industrial Augmented Reality?," 2011 10th IEEE International Symposium on Mixed and Augmented Reality, Basel, 2011, pp. 201-210. doi: 10.1109/ISMAR.2011.6092387S. Al Kuran, "The prospects for GaAs MESFET technology in dc-ac voltage conversion," in Proceedings of the Fourth Annual Portable Design Conference, 1997, pp. 137-142.
  7. [6] S. Nolle and G. Klinker, "Augmented reality as a comparison tool in automotive industry," 2006 IEEE/ACM International Symposium on Mixed and Augmented Reality, Santa Barbard, CA, 2006, pp. 249-250. doi: 10.1109/ISMAR.2006.297829
  8. [7] Jad Chalhoub, Steven K. Ayer, Using Mixed Reality for electrical construction design communication, Automation in Construction, Volume 86, 2018, Pages 1-10, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2017.10.028.
  9. [8] Hung-Lin Chi, Shih-Chung Kang, Xiangyu Wang, Research trends and opportunities of augmented reality applications in architecture, engineering, and construction, Automation in Construction, Volume 33, 2013, Pages 116-122, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2012.12.017.
  10. [9] Potential of Mobile Augmented Reality for Infrastructure Field Tasks, Amin Hammad, James H. Garrett, Jr., and Hassan A. Karimi, Applications of Advanced Technologies in Transportation (2002) . 2002
  11. [10] Zollmann, Stefanie & Hoppe, Christof & Kluckner, Stefan & Poglitsch, Christian & Bischof, Horst & Reitmayr, Gerhard. (2014). Augmented Reality for Construction Site Monitoring and Documentation. Proceedings of the IEEE. 102. 137-154. 10.1109/JPROC.2013.2294314.
  12. [11] K. Sukumar, Dhinesh & Lee, Seongki & Georgoulas, Christos & Bock, Thomas. (2015). Augmented Reality-Based Tele-Robotic System Architecture for On-Site Construction. 10.22260/ISARC2015/0075.
  13. [12] Chung, K. H., Shewchuk, J. P. and Williges, R. C. (1999), An application of augmented reality to thickness inspection. Hum. Factors Man., 9: 331-342.
  14. [13] Chan-Sik Park, Do-Yeop Lee, Oh-Seong Kwon, Xiangyu Wang, A framework for proactive construction defect management using BIM, augmented reality and ontology-based data collection template, Automation in Construction, Volume 33, 2013, Pages 61-71, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2012.09.010.
  15. [14] Ying Zhou, Hanbin Luo, Yiheng Yang, Implementation of augmented reality for segment displacement inspection during tunneling construction, Automation in Construction, Volume 82, 2017, Pages 112-121, ISSN 0926-5805.
  16. [15] Do Hyoung Shin, Phillip S. Dunston, Evaluation of Augmented Reality in steel column inspection, Automation in Construction, Volume 18, Issue 2, 2009, Pages 118-129, ISSN 0926-5805.
  17. [16] Kang, Shih-Chung & C. Yeh, K & Tsai, Meng-Han. (2012). On-site Building Information Retrieval By Using Projection-Based Augmented Reality. Journal of Computing in Civil Engineering. 26. 342-355. 10.1061/(ASCE)CP.1943-5487.0000156.
  18. [17] Merschbrock, Christoph & Nordahl-Rolfsen, Christian. (2016). BIM technology acceptance among reinforcement workers - The case of oslo airport's terminal 2. Electronic Journal of Information Technology in Construction. 21. 1-12.
  19. [18] Google ARCore Fundamental Concepts, https://developers.google.com/ ar/discover/concepts, Accessed: 12/12/2018.
  20. [19] Kato, H. and Billinghurst, M. (1999) Marker Tracking and HMD Calibration for a Video-Based Augmented Reality Conferencing System. 2nd IEEE and ACM International Workshop on Augmented Reality, San Francisco, 85-94.
  21. [20] Lowe, D.G. International Journal of Computer Vision (2004) 60: 91.
  22. [21] Forge AR