Title

全光學式生理學與三維影像顯微技術於果蠅神經研究之應用

Translated Titles

The Application of All-Optical Physiology and Volumetric Imaging Microscopy in Drosophila Neuroscience Research

DOI

10.6342/NTU201700566

Authors

楊凱評

Key Words

全光學式生理學 ; 三維影像 ; 變焦透鏡 ; 光學顯微鏡 ; 光遺傳學 ; 果蠅腦神經網絡 ; All-Optical Physiology ; Volumetric Imaging ; Tunable Lens ; Optical Microscopy ; Optogenetics ; Drosophila Connectome

PublicationName

臺灣大學物理學研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

朱士維

Content Language

英文

Chinese Abstract

大腦是掌管動物一切行為、情緒、意識、生命徵象等活動的重要器官,過去數十年來,神經科學研究有許多進展,例如發現許多神經疾病與大腦功能的關聯性。科學家們致力於了解腦神經科學網絡,使得腦神經細胞間的訊息傳遞逐漸成為重要且熱門的研究主題,研究大腦功能需要適當工具刺激與記錄神經訊號,但由於神經細胞體積較小、訊號傳遞迅速,且大腦又是相當緊密複雜的立體結構,因此,若要進行活體實驗,則需要發展具有高時間/空間解析度,能快速記錄立體結構中訊息傳遞的非侵入性技術。 傳統上,神經實驗多以電生理學方式進行,利用微電極刺激與記錄細胞膜電位變化來研究神經訊號傳遞,但此種方法不僅具有侵入性,也因為尺寸大小限制使得電極數量有其極限,再者,要將兩根微電極插入極靠近的神經元中以提高解析度也相當困難。相較之下,全光學式生理學以光學方式激發與記錄神經訊號傳遞,不僅提供了一種非侵入式的觀測方法,且可在同時偵測多個神經元時仍保持高空間解析度,十分有利於觀測活體中的神經網絡訊號傳遞。 然而,由於影像擷取速度較慢,現有的全光學式生理學仍然無法提供在三維空間中毫秒等級的空間解析度,因此,本研究的主要貢獻在於結合全光學式生理學與高速三維影像技術以改善現有顯微技術。由於活體內的腦神經元活動多半分布於立體空間中,若要觀察網絡中的訊息傳遞,勢必需要三維空間的影像顯微技術,且神經訊號傳遞快速,故此影像擷取技術也須於短時間內取得分布於三維空間中的訊號變化。在本研究中,我們在系統內加入可調式聲光折射率梯度透鏡,提供高速軸向變焦能力,可大幅降低取得三維影像訊號所需之掃描時間,且受到樣本空間穩定性的限制較小,使系統能更有效記錄三維空間中的神經訊號傳遞。 另一方面,在樣本的選擇上,果蠅是相關研究中常用的模式生物。由於果蠅腦與人腦結構有高度相似性,生命週期短、子代數量龐大,神經網絡複雜度又低於人腦,且相關基因轉殖技術也較為成熟,故相當適合作為研究樣本。在實驗中,我們使用基因轉殖的果蠅作為樣本,將紅光光敏離子通道蛋白(ReaChR、CsChrimson)及鈣離子濃度指示劑綠螢光蛋白(GCaMP6f)表現在果蠅的上下游目標腦區,當光敏通道蛋白受到單光子紅光(638 nm)雷射激發時,離子通道會開啟使上游神經細胞去極化產生動作電位,此激發方式比微電極更精準也更有彈性。而當訊號傳至下游腦區時,動作電位會導致細胞間鈣離子的流動,綠螢光蛋白會在鈣離子濃度改變時產生亮度變化,此亮度變化可被雙光子顯微鏡記錄下來,從而將神經細胞的動作電位訊號視覺化,使用此兩種基因轉殖技術即可以全光學的方式完成神經訊號的激發與記錄。 綜上所述,全光學式生理學結合三維影像顯微技術提供了非侵入性、時間/空間解析度高及三維影像掃描時間短等優勢,讓科學家能用光學基因轉殖激發、高速三維光學紀錄的方式了解神經細胞訊號傳遞,有助於釐清腦神經網絡中的上下游關係,進而更全面地理解大腦的運作方式,是腦神經科學研究領域中強而有力的工具。

English Abstract

Brain, which controls behaviors, emotions, consciousness and all vital signs of animals, is one of the most important organs in body. In recent decades, there have been significant progresses in neuroscience, such as the discovery of relations between some neural diseases and specific brain functions from the Human Connectome Project in USA since 2009. Scientists are dedicated to study the way how connectome works in brain, in order to provide new mechanistic insights of how brain functions affects memories, behaviors and diseases, thus made connectome a significant and popular topic nowadays. To understand the functional connectome of brain, we need to start from studying neural signaling. However, due to the small size (~μm) and the fast response (~ms) of neuron signaling, and the complex 3D structures of brain for in vivo experiments, it is necessary to develop suitable tools that have high spatial/temporal resolutions, fast volumetric recording ability and non-invasive feature. The conventional way is electrophysiology, which uses microelectrodes to stimulate and record electrical signals across neural membranes. However, this method is invasive, and spatially limited to one or few selected neurons due to the size of electrodes. Moreover, it is difficult to achieve high spatial resolution with two nearby microelectrodes inserted closely in neuron cells. In contrast, all-optical physiology, which uses light to both stimulate and record neural signaling, not only provides a noninvasive experiment method, but also achieves high spatial resolution when imaging tens to hundreds of neurons simultaneously. Nevertheless, due to the slow acquisition speed of imaging, current all-optical physiology studies have not achieved millisecond-scale temporal resolution in 3D tissue. The main novelty of our work is to improve the existed microscope by combining all-optical physiology with fast volumetric imaging technique. For monitoring in vivo fast neuronal activities in three-dimensional space, it is necessary to adopt a high-speed volumetric imaging microscopy to get the signal variation within very short time. In this research, we inserted a tunable acoustic gradient-index (TAG) lens into the all-optical physiology microscope system to rapidly change the focus position of recording laser in axial direction. It can significantly reduce the acquisition time of 3D imaging with less requirement of spatial stability of sample, therefore is more efficient in observing neural dynamics. On the other hand, in terms of model animal selection, Drosophila, which has short lifespan, large number of offspring and various mutations, is feasible to be genetically encoded and statistically analyzed. Since Drosophila brain has similar functional features to human brain, but with less complexity, it is a suitable model organism in brain research. In this work, we chose genetically modified Drosophila as the model sample. The Drosophila was encoded with ReaChR or CsChrimson actuators in a specific brain region, and was labeled with GCaMP6f sensors in a downstream region. When the ReaChR or CsChrimson is activated by 1-photon stimulation with a red laser (638 nm), the ion channels open and depolarize the neurons to produce action potentials. Following that, when the signals go to a downstream region, the action potential will induce the release of calcium ions, and then the GCaMP6f will show fluorescence intensity variation related to the concentration of calcium ions. This variation of fluorescence intensity can be recorded by a 2-photon microscope, enabling the visualization of action potential. That is to say, these optogenetic actuators and sensors help achieving optical stimulation and observation. In conclusion, all-optical physiology combining with volumetric imaging technique provides the advantages of noninvasiveness, high spatiotemporal resolution and fast 3D scanning. By simultaneously using optogenetic stimulation and high-speed volumetric observation, we are capable to study neuron signal propagations and sequences in live connectome. This technique is a powerful and innovative tool in neuroscience research.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學研究所
Reference
  1. 1. Pelvig, D.P., Pakkenberg, H., et al. (2008). "Neocortical Glial Cell Numbers in Human Brains." Neurobiology of Aging 29(11): 1754-1762.
    連結:
  2. 2. Sporns, O., Tononi, G., et al. (2005). "The Human Connectome: A Structural Description of the Human Brain." PLoS Computational Biology 1(4): 245-251.
    連結:
  3. 3. Fenno, L., Yizhar, O., et al. (2011). "The Development and Application of Optogenetics." Annual Review of Neuroscience 34(1): 389-412.
    連結:
  4. 4. Hampel, S., Chung, P., et al. (2011). "Drosophila Brainbow: A Recombinase-Based Fluorescence Labeling Technique to Subdivide Neural Expression Patterns." Nature Methods 8(3): 253-U102.
    連結:
  5. 5. Reiter, L.T., Potocki, L., et al. (2001). "A Systematic Analysis of Human Disease-Associated Gene Sequences in Drosophila Melanogaster." Genome Research 11(6): 1114-1125.
    連結:
  6. 6. Chiang, A.S., Lin, C.Y., et al. (2011). "Three-Dimensional Reconstruction of Brain-Wide Wiring Networks in Drosophila at Single-Cell Resolution." Current Biology 21(1): 1-11.
    連結:
  7. 7. Medzhitov, R., PrestonHurlburt, P., et al. (1997). "A Human Homologue of the Drosophila Toll Protein Signals Activation of Adaptive Immunity." Nature 388(6640): 394-397.
    連結:
  8. 8. Adams, M.D., Celniker, S.E., et al. (2000). "The Genome Sequence of Drosophila Melanogaster." Science 287(5461): 2185-2195.
    連結:
  9. 9. Kohl, J., Ostrovsky, A.D., et al. (2013). "A Bidirectional Circuit Switch Reroutes Pheromone Signals in Male and Female Brains." Cell 155(7): 1610-1623.
    連結:
  10. 10. Pongs, O., Lindemeier, J., et al. (1993). "Frequenin—a Novel Calcium-Binding Protein That Modulates Synaptic Efficacy in the Drosophila Nervous System." Neuron 11(1): 15-28.
    連結:
  11. 11. Scanziani, M. and Hausser, M. (2009). "Electrophysiology in the Age of Light." Nature 461(7266): 930-939.
    連結:
  12. 12. Belliveau, J., Kennedy, D., et al. (1991). "Functional Mapping of the Human Visual Cortex by Magnetic Resonance Imaging." Science 254(5032): 716-719.
    連結:
  13. 13. Cheng, K. (2012). "Revealing Human Ocular Dominance Columns Using High-Resolution Functional Magnetic Resonance Imaging." NeuroImage 62(2): 1029-1034.
    連結:
  14. 14. Tian, L., Hires, S.A., et al. (2009). "Imaging Neural Activity in Worms, Flies and Mice with Improved Gcamp Calcium Indicators." Nature Methods 6(12): 875-881.
    連結:
  15. 15. Olivier, N., Mermillod-Blondin, A., et al. (2009). "Two-Photon Microscopy with Simultaneous Standard and Extended Depth of Field Using a Tunable Acoustic Gradient-Index Lens." Optics Letters 34(11): 1684-1686.
    連結:
  16. 16. Deisseroth, K. (2011). "Optogenetics." Nature Methods 8(1): 26-29.
    連結:
  17. 17. Hodgkin, A.L. and Huxley, A.F. (1952). "A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve." Journal of Physiology-London 117(4): 500-544.
    連結:
  18. 19. Robinson, D.A. (1968). "The Electrical Properties of Metal Microelectrodes." Proceedings of the IEEE 56(6): 1065-1071.
    連結:
  19. 20. Wu, F., Stark, E., et al. (2013). "An Implantable Neural Probe with Monolithically Integrated Dielectric Waveguide and Recording Electrodes for Optogenetics Applications." Journal of Neural Engineering 10(5).
    連結:
  20. 21. Spieth, S., Brett, O., et al. (2011). "A Floating 3D Silicon Microprobe Array for Neural Drug Delivery Compatible with Electrical Recording." Journal of Micromechanics and Microengineering 21(12).
    連結:
  21. 22. Ogawa, S., Lee, T.M., et al. (1990). "Brain Magnetic-Resonance-Imaging with Contrast Dependent on Blood Oxygenation." Proceedings of the National Academy of Sciences of the United States of America 87(24): 9868-9872.
    連結:
  22. 23. De Carlos, J.A. and Borrell, J. (2007). "A Historical Reflection of the Contributions of Cajal and Golgi to the Foundations of Neuroscience." Brain Research Reviews 55(1): 8-16.
    連結:
  23. 24. Horton, N.G. and Xu, C. (2015). "Dispersion Compensation in Three-Photon Fluorescence Microscopy at 1,700 Nm." Biomedical Optics Express 6(4): 1392-1397.
    連結:
  24. 25. Miyawaki, A. (2013). "Fluorescence Imaging in the Last Two Decades." Microscopy 62(1): 63-68.
    連結:
  25. 26. Fekete, Z. (2015). "Recent Advances in Silicon-Based Neural Microelectrodes and Microsystems: A Review." Sensors and Actuators B-Chemical 215: 300-315.
    連結:
  26. 27. Zhang, J. and Wu, D. (2016). "Recent Progress in Magnetic Resonance Imaging of the Embryonic and Neonatal Mouse Brain." Frontiers in Neuroanatomy 10.
    連結:
  27. 28. Uecker, M., Zhang, S., et al. (2010). "Real-Time MRI at a Resolution of 20 ms." NMR in Biomedicine 23(8): 986-994.
    連結:
  28. 29. Peterka, D.S., Takahashi, H., et al. (2011). "Imaging Voltage in Neurons." Neuron 69(1): 9-21.
    連結:
  29. 30. Aramakis, V.B. and Metherate, R. (1998). "Nicotine Selectively Enhances NMDA Receptor-Mediated Synaptic Transmission During Postnatal Development in Sensory Neocortex." The Journal of Neuroscience 18(20): 8485-8495.
    連結:
  30. 32. Keene, A.C. and Waddell, S. (2007). "Drosophila Olfactory Memory: Single Genes to Complex Neural Circuits." Nature Reviews Neuroscience 8(5): 341-354.
    連結:
  31. 33. Nagel, G., Ollig, D., et al. (2002). "Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae." Science 296(5577): 2395-2398.
    連結:
  32. 34. Matsuno-Yagi, A. and Mukohata, Y. (1977). "Two Possible Roles of Bacteriorhodopsin; a Comparative Study of Strains of Halobacterium Halobium Differing in Pigmentation." Biochemical and Biophysical Research Communications 78(1): 237-243.
    連結:
  33. 35. Dura, B., Chen, M.Q., et al. (2012). "High-Frequency Electrical Stimulation of Cardiac Cells and Application to Artifact Reduction." IEEE Transactions on Biomedical Engineering 59(5): 1381-1390.
    連結:
  34. 36. Galas, J.-C., Morel, M., et al. (2010). "High Frequency Chemical Stimulation of Living Cells." Biophysical Journal 98(3): 194a.
    連結:
  35. 37. Dinse, H.R., Krüger, K., et al. (1997). "Low-Frequency Oscillations of Visual, Auditory and Somatosensory Cortical Neurons Evoked by Sensory Stimulation." International Journal of Psychophysiology 26(1–3): 205-227.
    連結:
  36. 38. Gunaydin, L.A., Yizhar, O., et al. (2010). "Ultrafast Optogenetic Control." Nature Neuroscience 13(3): 387-392.
    連結:
  37. 39. Baker, P.F., Hodgkin, A.L., et al. (1971). "Depolarization and Calcium Entry in Squid Giant Axons." The Journal of Physiology 218(3): 709-755.
    連結:
  38. 41. Huber, D., Gutnisky, D.A., et al. (2012). "Multiple Dynamic Representations in the Motor Cortex During Sensorimotor Learning." Nature 484(7395): 473-478.
    連結:
  39. 42. Akerboom, J., Carreras Calderón, N., et al. (2013). "Genetically Encoded Calcium Indicators for Multi-Color Neural Activity Imaging and Combination with Optogenetics." Frontiers in Molecular Neuroscience 6.
    連結:
  40. 43. Denk, W., Strickler, J., et al. (1990). "Two-Photon Laser Scanning Fluorescence Microscopy." Science 248(4951): 73-76.
    連結:
  41. 44. Helmchen, F. and Denk, W. (2005). "Deep Tissue Two-Photon Microscopy." Nat Meth 2(12): 932-940.
    連結:
  42. 45. Kobat, D., Durst, M.E., et al. (2009). "Deep Tissue Multiphoton Microscopy Using Longer Wavelength Excitation." Optics Express 17(16): 13354-13364.
    連結:
  43. 46. Gobel, W., Kampa, B.M., et al. (2007). "Imaging Cellular Network Dynamics in Three Dimensions Using Fast 3D Laser Scanning." Nature Methods 4(1): 73-79.
    連結:
  44. 47. Reddy, G.D., Kelleher, K., et al. (2008). "Three-Dimensional Random Access Multiphoton Microscopy for Functional Imaging of Neuronal Activity." Nature Neuroscience 11(6): 713-720.
    連結:
  45. 48. Quirin, S., Jackson, J., et al. (2014). "Simultaneous Imaging of Neural Activity in Three Dimensions." Frontiers in Neural Circuits 8.
    連結:
  46. 49. McLeod, E. and Arnold, C.B. (2007). "Mechanics and Refractive Power Optimization of Tunable Acoustic Gradient Lenses." Journal of Applied Physics 102(3): 033104.
    連結:
  47. 50. McLeod, E., Hopkins, A.B., et al. (2006). "Multiscale Bessel Beams Generated by a Tunable Acoustic Gradient Index of Refraction Lens." Optics Letters 31(21): 3155-3157.
    連結:
  48. 51. Prevedel, R., Yoon, Y.-G., et al. (2014). "Simultaneous Whole-Animal 3D Imaging of Neuronal Activity Using Light-Field Microscopy." Nature Methods 11(7): 727-730.
    連結:
  49. 52. Ahrens, M.B., Orger, M.B., et al. (2013). "Whole-Brain Functional Imaging at Cellular Resolution Using Light-Sheet Microscopy." Nature Methods 10(5): 413-420.
    連結:
  50. 53. Chen, B.-C., Legant, W.R., et al. (2014). "Lattice Light-Sheet Microscopy: Imaging Molecules to Embryos at High Spatiotemporal Resolution." Science 346(6208).
    連結:
  51. 54. Oku, H., Hashimoto, K., et al. (2004). "Variable-Focus Lens with 1-kHz Bandwidth." Optics Express 12(10): 2138-2149.
    連結:
  52. 55. Keller, Philipp J. and Ahrens, Misha B. (2015). "Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy." Neuron 85(3): 462-483.
    連結:
  53. 57. Nagel, G., Szellas, T., et al. (2003). "Channelrhodopsin-2, a Directly Light-Gated Cation-Selective Membrane Channel." Proceedings of the National Academy of Sciences of the United States of America 100(24): 13940-13945.
    連結:
  54. 58. Klapoetke, N.C., Murata, Y., et al. (2014). "Independent Optical Excitation of Distinct Neural Populations." Nature Methods 11(3): 338-346.
    連結:
  55. 59. Packer, A.M., Russell, L.E., et al. (2015). "Simultaneous All-Optical Manipulation and Recording of Neural Circuit Activity with Cellular Resolution in Vivo." Nature Methods 12(2): 140-146.
    連結:
  56. 60. Packer, A.M., Roska, B., et al. (2013). "Targeting Neurons and Photons for Optogenetics." Nature Neuroscience 16(7): 805-815.
    連結:
  57. 61. Nakai, J., Ohkura, M., et al. (2001). "A High Signal-to-Noise Ca2+ Probe Composed of a Single Green Fluorescent Protein." Nat Biotech 19(2): 137-141.
    連結:
  58. 62. Akerboom, J., Rivera, J.D.V., et al. (2009). "Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design." Journal of Biological Chemistry 284(10): 6455-6464.
    連結:
  59. 63. Chen, T.-W., Wardill, T.J., et al. (2013). "Ultrasensitive Fluorescent Proteins for Imaging Neuronal Activity." Nature 499(7458): 295-300.
    連結:
  60. 64. Yamaguchi, S., Desplan, C., et al. (2010). "Contribution of Photoreceptor Subtypes to Spectral Wavelength Preference in Drosophila." Proceedings of the National Academy of Sciences 107(12): 5634-5639.
    連結:
  61. 65. Lin, J.Y., Knutsen, P.M., et al. (2013). "ReaChR: A Red-Shifted Variant of Channelrhodopsin Enables Deep Transcranial Optogenetic Excitation." Nature Neuroscience 16(10): 1499-1508.
    連結:
  62. 66. Inagaki, H.K., Jung, Y., et al. (2014). "Optogenetic Control of Drosophila Using a Red-Shifted Channelrhodopsin Reveals Experience-Dependent Influences on Courtship." Nature Methods 11(3): 325-332.
    連結:
  63. 68. Menzel, R. and Giurfa, M. (1999). "Neurobiology: Cognition by a Mini Brain." Nature 400(6746): 718-719.
    連結:
  64. 69. Lin, C.-Y., Chuang, C.-C., et al. (2013). "A Comprehensive Wiring Diagram of the Protocerebral Bridge for Visual Information Processing in the Drosophila Brain." Cell Reports 3(5): 1739-1753.
    連結:
  65. 70. Born, M. and Wolf, E., (1980)"Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light". New York: Pergamon Press.
    連結:
  66. 71. Helmchen, F. and Denk, W. (2005). "Deep Tissue Two-Photon Microscopy." Nature Methods 2(12): 932-940.
    連結:
  67. 72. Duocastella, M., Sun, B., et al. (2012). "Simultaneous Imaging of Multiple Focal Planes for Three-Dimensional Microscopy Using Ultra-High-Speed Adaptive Optics." Journal of Biomedical Optics 17(5): 3.
    連結:
  68. 74. Yu, H., Park, J., et al. (2015). "Recent Advances in Wavefront Shaping Techniques for Biomedical Applications." Current Applied Physics 15(5): 632-641.
    連結:
  69. 75. Oheim, M., van 't Hoff, M., et al. (2014). "New Red-Fluorescent Calcium Indicators for Optogenetics, Photoactivation and Multi-Color Imaging." Biochimica Et Biophysica Acta-Molecular Cell Research 843(10): 2284-2306.
    連結:
  70. 76. Yang, Helen H., St-Pierre, F., et al. (2016). "Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing in Vivo." Cell 166(1): 245-257.
    連結:
  71. 18. Barnett, M.W. and Larkman, P.M. (2007). "The Action Potential." Practical Neurology 7(3): 192-197.
  72. 31. Durand, D.M., Park, E.-H., et al. (2010). "Potassium Diffusive Coupling in Neural Networks." Philosophical Transactions: Biological Sciences 365(1551): 2347-2362.
  73. 40. Grynkiewicz, G., Poenie, M., et al. (1985). "A New Generation of Ca2+ Indicators with Greatly Improved Fluorescence Properties." Journal of Biological Chemistry 260(6): 3440-3450.
  74. 56. Yan, J., Mermillod-Blondin, A., et al. (2009) "Rapidly Tunable Acoustic Gradient Index Lenses for Pulsed Imaging and Laser Processing". in 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum Electronics and Laser Science Conference.
  75. 67. Kim, S.S., Franconville, R., et al. (2015). "Optogenetics in Drosophila Melanogaster." in New Techniques in Systems Neuroscience, D.A. Douglass, Editor., Springer International Publishing: Cham. p. 147-176.
  76. 73. Hsu, K.-J. (2014), "All-in-Focus Functional Imaging System for Drosophila Brain Activities Study". National Taiwan University, master's thesis.