Translated Titles

Secret Key Rates of Practical Quantum Key Distribution





Key Words

密碼學 ; 量子密碼學 ; 不可複製原理 ; 測不準原理 ; Cryptography ; Quantum key distribution ; no-cloning theorem ; uncertainty principle



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

隨著互聯網的興起,安全通信成為必須。因為互聯網上的訊息是 相對開放的,所以我們需要一些方法來加密我們的信息。用於解決密 鑰分發問題的現代密碼學使用公鑰密碼系統(PKC),其安全性基於 計算安全性。即有限的計算能力和資源。最常用的公開密鑰密碼系統 是 RSA,它基於難以分解大的相乘質數。然而,一台採用 Shor 演算 法的量子計算機可以在短時間內破解 RSA 密碼系統,從而威脅到當 前的 PCK。量子密鑰分配為解決密鑰分配問題提供了一條新途徑,其 安全性基於物理定律,如不確定性原理和不可複製原理。在 QKD 協 議中相互通信的用戶可以檢測到任何試圖獲得密鑰資訊的第三方的存 在。理想的 QKD 已被證明是無條件安全的(unconditional security)。 但在現實世界中,光源,探測器,通道損失等方面存在一些缺陷或 缺陷,可能被對手利用。在本論文中,我們討論了 decoy-state QKD, 它是克服由於單光子光源的不完善而引起的通訊通道中的光子數分 裂攻擊 (photon number splitting ) 的有效方案。我們還研究了獨立測量 設備(MDI)QKD 方案,以克服旁路探測器攻擊。將 MDI-QKD 與 decoy-state 方法相結合,在結合理論與實踐之間的差距提供了一條清 晰的途徑。我們使用真實的實驗參數來模擬和計算這些 QKD 協議中 生成的關鍵速率。

English Abstract

With the rise of the Internet, the secure communication becomes neces- sary and important. Because the information on internet is accessible to ev- eryone, we need some way to encrypt our message. Modern cryptography to solve key distribution problem use public key cryptography (PKC), and its security is based on the computational security. ie limited computing power and resources. The most commonly used public-key cryptosystem is RSA, which is based upon the difficulty to factor large semi-prime numbers. How- ever, a quantum computer with Shor’s algorithm can crack RSA cryptosystem in a short time, and thus will threaten the current PCK. Quantum key distribu- tion provides a new way to solve key distribution problem, and its security is based on the law of physics, such as the uncertainty principle and no-cloning theorem. The users who communicate with each other in the QKD proto- col can detect the presence of any third party that tries to gain knowledge of the key. The ideal QKD has been proven to be unconditionally secure. But in real world implementation, there are some flaws or imperfection in light sources, detectors, channel loss and etc. that may be exploited by adversaries. In this thesis, we discuss the decoy-state QKD that is an effective scheme to overcome the notorious photon number splitting attack in the communication channel due to the imperfection of single-photon light source. We also inves- tigate the measurement device independent (MDI) QKD scheme to overcome the side-channel detector attack. Combining the MDI-QKD with decoy-state method, offers a clear way to bridge the gap between theory and practice. We simulate and calculate the key rate generated in these QKD protocols using realistic experimental parameters.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理學研究所
  1. [5] D.Stucki,N.Brunner,N.Gisin,V.Scarani,andH.Zbinden.Fastandsimpleone-way quantum key distribution. Applied Physics Letters, 87(19):194108194108, 2005.
  2. [8] Xiongfeng Ma, Mohsen Razavi ,arXiv:1204.4856
  3. [9] E. Artur “Quantum cryptography based on Bell‟s theorem.”,Phys. Rev. Lett., Vol. 67, No, 6,5 august 1991, pp 661-663.
  4. [10] Frédéric Grosshans and Philippe Grangier, Phys. Rev. Lett. 88, 057902 (2002)
  5. [11] Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J. Cerf, Miloslav Dušek, Norbert Lütkenhaus, and Momtchil Peev ”The security of practical quantum key dis- tribution”, Rev. Mod. Phys. 81, 1301 (2009)
  6. [12] Nielsen, Chaung,” Quantum computation and quantum information”, ch11
  7. [13] R. Renner, N. Gisin, B. Kraus, Phys. Rev. A 72,012332 (2005)
  8. [14] C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).
  9. [15] P.W.Shor,J.Preskill,SimpleproofofsecurityoftheBB84quantumkeydistribution protocol, Phys. Rev. Lett. 85 (2000)
  10. [20] H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. , 94, 230504 (2005)
  11. [22] K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant,B. M. Voronov, G. N. Goltsman, and K. K. Berggren, Opt. Express 14, 527 (2006).
  12. [25] Yang Liu, Teng-Yun Chen, Jian Wang, Wen-Qi Cai, Xu Wan, Luo-Kan Chen, Jin- Hong Wang, Shu-Bin Liu, Hao Liang, Lin Yang, Cheng-Zhi Peng, Kai Chen, Zeng- Bing Chen, and Jian-Wei Pan, Opt. Express 18, 8587-8594 (2010)
  13. [26] Xiongfeng Ma, ”Quantum cryptography: theory and practice”, arXiv:0808.1385
  14. [1] Petitcolas, Fabien, electronic version and English translation of ”La cryptographie militaire”
  15. [2] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,”in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India, 1984, pp. 175–179.
  16. [3] K. Inoue, E. Waks, and Y. Yamamoto, Phys. Lett. A, 68, 022317 (2003).
  17. [4] Nicolas Gisin, Gregoire Ribordy, Hugo Zbinden, Damien Stucki, Nicolas Brunner, Valerio Scarani, quant-ph/0411022v1
  18. [6] M. Curty, F.Xu, W. Cui et al., Nat. Commun. 5 3732(2014)
  19. [7] Hong, C. K., Ou, Z. Y., and Mandel, L.“, Measurementof subpicosecond time intervals
  20. between two photons by interference”, Phys. Rev. Lett. 59, 2044 (1987).
  21. [16] D. Gottesman, H.-K. Lo, N. Lu ̈tkenhaus, and J. Preskill, Quantum Inf. Comput. 4, 325 (2004).
  22. [17] Xiongfeng Ma, Bing Qi, Yi Zhao, and Hoi-Kwong Lo, Phys. Rev. A 72, 012326 (2005)
  23. [18] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Review of Scientific Instru- ments 82, 071101 (2011)
  24. [19] C.T.Kelley,IterativeMethodsforLinearandNonlinearEquations,SIAM,Philadel- phia, 1995.
  25. [21] C. Gobby, Z. L. Yuan, and A. J. Shields, Appl. Phys. Lett. 84, 3762 (2004). Zhou, Y-H., Yu, Z. -W, Wang X.B, Phys, Rev. A93, 042324(2016)
  26. [23] A. E. Lita, A. J. Miller, and S. W. Nam, Opt. Express 16, 3032 (2008)
  27. [24] M. Lucamarini, K. A. Patel, J. F. Dynes, B. Frohlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, Opt. Express 21, 24550 (2013).
  28. [27] Hoi-Kwong Lo, Marcos Curty, and Bing Qi, Phys. Rev. Lett. 108, 130503 (2012)
  29. [28] Hoi-Kwong Lo, Marcos Curty, and Bing Qi, Phys. Rev. Lett. 108, 130503 (2012)
  30. [29] Xiongfeng Ma, Chi-Hang Fred Fung, and Mohsen Razavi, Phys. Rev. A 86, 052305 (2012)
  31. [30] Zhou, Y-H., Yu, Z. -W, Wang X.B, Phys, Rev. A93, 042324(2016)