透過您的圖書館登入
IP:3.237.189.116
  • 學位論文

鋼板阻尼器構架耐震設計分析與擬動態試驗研究

Seismic Design, Analysis and Pseudo Dynamic Experiment of SPDs in MRF

指導教授 : 蔡克銓

摘要


鋼板阻尼器(Steel Panel Damper, SPD)為三段型寬翼構件,中間段為非彈性核心段(Inelastic Core, IC),上下段為彈性連接段(Elastic Joints, EJ),在地震作用下核心段腹板能以反覆剪力塑性變形消散能量,而在核心段設置適當加勁板可延緩挫屈的發生。近年來,國內外相關研究已證實在抗彎構架(moment resisting frame, MRF)中設置SPD可有效率地提供建築物側向勁度、強度與韌性。本研究探討SPD的製造工法、勁度效應及在構架中不同的配置方式與其對應之容量設計方法,並利用反覆載重及擬動態實驗比較各類SPD之行為與構架之性能。 調整IC段長度比α、翼板厚與EJ段腹板厚皆可在不改變SPD強度的情況下調整其勁度,長度比α從0.6降到0.2,隨兩段腹板厚比不同,彈性勁度約上升20%至40%,翼板及EJ段腹板厚度分別上升至1.8倍,彈性勁度約上升14%至17%與13%至32%。雖然這些方法能確實增加SPD單元的勁度,但在構架中,SPD勁度上升造成構架整體勁度上升的幅度有限,若要有效增加構架勁度,梁勁度也須調整。 本研究提出SPD在構架中的三種配置方式與其對應之邊界梁容量設計方法,每種配置各利用一單跨六層樓結構,並利用PISA3D分析程式建模,進行側推分析,以單位用鋼量之彈性勁度為比較基準,顯示中心型配置最佳。若偏心距在八分之一到六分之一總梁跨的範圍內,偏心型配置也有不錯的勁度效益。本研究另利用未使用容量設計法設計之單跨六層樓結構進行側推分析,發現在梁與SPD相交處出現彎矩塑鉸,而使用容量設計法設計之原始模型塑鉸位置皆符合預期,證實所提容量設計法之可行性。 本研究提出四種SPD製造方法,並選擇EJ段腹板貼板加勁式設計兩組SPD試體,利用NCREE的MATS試驗機進行反覆載重試驗。結果顯示兩組試體皆有穩定的遲滯迴圈,IC段剪應變至少都超過0.09弧度,累積塑性應變(Cumulative Plastic Deformation, CPD)皆為300以上,雖然有一試體因施加之面外變形過大造成上端板與翼板間的銲道先發生撕裂破壞,使得靠近上端板部分之EJ段及翼板石膏漆有剝落的現象,但在最大剪力強度下,兩座試體的EJ段仍保持彈性。本研究也建置Abaqus模型精準模擬試體之反應。 為探討抗彎構架在加入SPD之後的耐震性能,使用第三試體於MATS試驗機進行子結構擬動態試驗並配合分析模型同步更正技術,試體完整的多次SLE、9次DBE、1次MCE還未破壞,即約可承受5次MCE才發生破壞,證明SPD-MRF之耐震能力良好。

並列摘要


The proposed steel panel damper (SPD) includes three wide-flange sections, the middle inelastic core (IC), and the top and bottom elastic joints (EJs), respectively. Under a severe earthquake, the two EJs in an SPD are designed to remain elastic while the IC could undergo large inelastic shear deformation thereby dissipating seismic energy. In order to delay the buckling of the IC web, stiffeners must be attached to the web, top and bottom ends of the IC. This study investigate the fabrication methods of SPDs, effects of the IC to EJ web thickness or length ratios and the flange thickness on the overall stiffness of the SPD. In addition, three different SPD configurations for the moment resisting frames (SPD-MRFs) and the corresponding capacity design methods of the boundary beams are studied. In order to investigate the performance of the SPDs and SPD-MRF during earthquakes, cyclic and substructure pseudo-dynamic tests are conducted on three full scale SPD specimens. By changing the IC length ratio α, flange thickness, and EJ web thickness, SPD’s elastic stiffness can be adjusted while its shear strength can be maintained by using the same IC depth and web thickness. When the ratio α decreases from 0.6 to 0.2, SPD’s elastic stiffness increases by 20% to 40%, depending on the EJ to IC web thickness ratios. When the SPD flange thickness or the EJ web thickness each increases by 80%, the SPD’s elastic stiffness enhances by 14% to 17% or 13% to 32%, respectively. However, increasing the SPDs’ stiffness have little effect on the lateral stiffness of the SPD-MRF unless the stiffness of the boundary beams are properly stiffened. This study presents three different SPD-MRF configurations and the corresponding capacity design results for three kinds of one-bay 6-story SPD-MRFs. Pushover analyses are conducted on PISA3D models. Using elastic stiffness to steel usage ratio as the criterion, centered-configuration is most effective. The eccentric-configuration is also effective when the eccentricity is one-eighth to one-sixth of the beam span. Besides, single span six floor SPD-MRFs are designed without using capacity design method. Pushover analyses are also conducted on the single-bay 6-story SPD-MRF models with or without the capacity design of boundary beams. Results show that plastic hinges formed at the junctions of SPDs and beams when the beam capacity design is not complied. The plastic hinges formed only at the beam-to-cloumn ends when the beam capacity design is conformed, suggesting the effectiveness of the proposed capacity design procedures. Among the four different SPD fabrication methods introduced, this study adopted the doubler plates to stiffened the EJ webs of two 900mm deep test specimens. Results of the cyclic loading tests using the MATS facility at NCREE confirm that the two specimens have very stable hysteresis performance. The maximum IC shear deformations are greater than 0.09 radian, while the cumulative plastic deformations (CPD) are larger than 300. Although the welds between the top end plate and the flange in one specimen failed due to the large out-of-plane deformation imposed during the test. The EJs of the two specimens remained elastic when the maximum SPD shear developed. The SPD experimental responses are accurately simulated by Abaqus model anslyses. A 600mm deep SPD Specimen was tested using MATS facility and substructure pseudo-dynamic testing procedures with model updating technique. The specimen sustained several SLEs, 9 DBEs, and 1 MCE without any failure. The total CPD is equivalent to 5 times of MCEs, confirming the effectiveness of the proposed SPD-MRF.

參考文獻


 洪唯竣 (2015) 「新建雙層含鋼板剪力牆之鋼筋混凝土構架之耐震實驗與行為研究」國立台灣大學土木工程學系結構組碩士論文。
 蘇磊 (2013) 「多層樓鋼板剪力牆邊界柱構件耐震設計研究」,國立台灣大學土木工程學系結構組碩士論文。
 許仲翔 (2016) 「含鋼板阻尼器構架耐震設計及分析與實驗研究」,國立台灣大學土木工程學系結構組碩士論文。蔡克銓教授指導。
 AISC 341-10 (2010). “Seismic Provisions for Structural Steel Buildings.” American Institution of Steel Construction, Chicago.
 Chen, Z., Ge, H., Usami, T. (2006). “Hysteretic Model of Stiffened Shear Panel Dampers.” Journal of structural engineering, 132, 478-483.

延伸閱讀