Title

轉糖鏈球菌抑制吞噬細胞毒殺作用之機轉與基因調控

Translated Titles

Mechanisms and Gene Regulation Associated with Inhibition of Phagocytic Killing in Streptococcus mutans

DOI

10.6342/NTU.2006.00738

Authors

陳珩昌

Key Words

轉糖鏈球菌 ; 吞噬細胞 ; 毒殺 ; 基因調控 ; Streptococcus mutans ; Phagocytic Killing ; Gene Regulation

PublicationName

臺灣大學微生物學研究所學位論文

Volume or Term/Year and Month of Publication

2006年

Academic Degree Category

碩士

Advisor

賈景山

Content Language

繁體中文

Chinese Abstract

轉糖鏈球菌(Streptococcus mutans) 為人類齲齒的致病菌,並也是人類感染性心內膜炎的機會致病菌之一。在感染性心內膜炎發展的初期,轉糖鏈球菌必須由口腔進入血液循環之中,而暴露在血漿之中。血漿是一成份複雜的豐富培養基。一旦轉糖鏈球菌進入血液中後,細菌必須面對新環境所產生的壓力;而環境中壓力所產生的訊號也會刺激細菌特別基因的表現來適應與生存於改變的環境中。 在本實驗的第一部份,我們利用微陣列分析來探討轉醣鏈球菌受血漿刺激後之基因的表現。在本篇研究中,我們著重於轉糖鏈球菌內與氧化還原相關的基因及一個two component system response regulator, scnR 二者間的關係。經過胺基酸序列比對後,我們發現到scnR 與Streptococcus pyogenes 內用以抵抗吞噬細胞毒殺作用的irr response regulator 有35 % 的一致性。爾後,我們建構了轉糖鏈球菌scnR 的突變株,並分析在抵抗Raw264.7 吞噬作用以及細胞毒殺作用能力上,與轉糖鏈球菌野生株的差異。我們發現scnR 突變株在消弭經由Raw264.7 所產生的反應性含氧物種之能力上較野生株降低許多。我們也發現,轉糖鏈球菌野生株在經過血漿刺激後,可以增加經過Raw264.7 毒殺作用後的存活率;然而,此現象卻沒有在scnR突變株中發現。因此,我們認為轉糖鏈球菌利用two component system response regulator scnR 調控下游與氧化還原相關基因的表現,對於抵抗Raw264.7 的毒殺作用是重要的;並且在經由血漿刺激後,是可以增加細菌scnR與氧化還原相關基因的表現。

English Abstract

Streptococcus mutans, being the principal etiological agent of dental caries, is also one of the most common opportunistic pathogens isolated from patients with infective endocarditis (IE). As an early step in the development of infective endocarditis, S. mutans gains access to the bloodstream from the oral cavity, and exposes in human plasma. We hypothesized that plasma as a complex medium could trigger S. mutans cells to adapt to different stresses through inducing specific gene expression upon sensing of signals from the plasma components. In the first part of this study, we used oligonucleotide DNA microarray to analyze the expression of the genes after plasma stimulation. We focused on the function of redox genes and one of the two component system response regulator, scnR, in this study. We found that the amino acid sequence of scnR showed 35% identify to irr response regulator, which is associated with ability against phagocytic killing in Streptococcus pyogenes. Furthermore, an isogenic scnR deletion mutant exhibited decreased ability to eliminate the reactive oxygen species (ROS) produced in Raw264.7 in comparison with wild-type S. mutans strain. In addition, plasma-induced resistance to phagocytic killing was significantly reduced in scnR deletion mutant. We hypothesize that the two component system response regulator, scnR, is important for S. mutans against phagocytic killing in Raw264.7 through stimulating redox genes expression.

Topic Category 醫藥衛生 > 基礎醫學
醫學院 > 微生物學研究所
Reference
  1. 3. Bernard Gu., M. D. Senadheera, G. A. Spatafora, Y. C. Huang, J. Choi, D. C. I. Hung, J. S. Treglown, S. D.Goodman, R. P. Ellen, and D. G. Cvitkovitch. 2005. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J. Bacteriol. 187 (12): 4064- 4076.
    連結:
  2. 4. Bisno A. L., M. O. Brito, and C. M. Collins. 2003. Molecular basis of group A streptococcal virulence. The Lancet Infectious Disease. 3 (4): 191-200.
    連結:
  3. 5. Biswas S., and I. Biswas. 2006. Regulation of the glucosyltransferase (gtfBC) operon by covR in Streptococcus mutans. J. Bacteriol. 188 (3): 988-998.
    連結:
  4. 6. Bogdan C., M. Roellinghoff and A. Diefenbach. 2000. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12: 64-76.
    連結:
  5. 7. Borjesson D. L., S. D. Kobayashi, A. R. Whitney, J. M. Voyich, C. M. Argue, and F. R. DeLeo. 2005. Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J. Immunol. 174: 6364-6372.
    連結:
  6. 8. Bratthall D. 1969. Immunodiffusion studies on the serological specificity of streptococci resembling Streptococcus mutans. Odontol. Revy. 21: 231-43.
    連結:
  7. 9. Brunskill E. W., and K. W. Bayles. 1996. Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus. J. Bacteriol. 178 (3): 611-619.
    連結:
  8. 10. Carlsson J., and I. R. Hamiton. 1996. Differential toxic effects of lactate and acetate on the metabolism of Streptococcus mutans and Streptococcus sanguis. Oral Microbiol. Immunol. 11: 412-419.
    連結:
  9. 11. Chakravortty D., I. Hansen-Wester, and M. Hensel. 2002. Salmonella pathogenicity Island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J. Exp. Med. 195 (9): 1155-1166.
    連結:
  10. 12. Clarke J. R. 1924. On the bacterial factor in the aetiology of dental caries. British. J. Exp. Pathol. 5: 141-148.
    連結:
  11. 13. Cleary P. P. 2006. Streptococcus moves inward. Nat. Med. 12 (4): 384-386.
    連結:
  12. 14. Cross A. R., and A. W. Segal. 2004. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta. 1657(1): 1-22.
    連結:
  13. 15. Cunningham M. W. 2000. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13 (3): 470-511.
    連結:
  14. 16. Dalton T. L., R. I. Hobb, and J. R. Scott. 2006. Analysis of the role of CovR and CovS in the dissemination of Streptococcus pyogenes in invasive skin disease. Micro. Pathog. P.1-7.
    連結:
  15. 17. Darwin K. H., S. Ehrt, J. Gutierrez-Ramos, N. Weich, and C. F. Nathan. 2003. The proteasome of Mycobacterium tuberculosis is required fro resistance to nitric oxide. Science 302: 1963-1966.
    連結:
  16. 18. Dashper S. G., and E. C. Reynolds. 1992. pH regulation by Streptococcus mutans. J. Dent. Res. 71: 1159-1165.
    連結:
  17. 19. Douglas C. W., J. Heath, K. K. Hampton, and F. E. Preston. 1993. Identity of viridians streptococci isolated from cases of infective endocarditis. J. Med. Microbiol. 39: 179-183.
    連結:
  18. 20. Ehrt S., M. U. Shiloh, J. Ruan, M. Choi, S. Gunzburg, C. Nathan, Q. Xie, and L. W. Riley. 1997. A novel antioxidant gene from Mycobacterium tuberculosis. J. Exp. Med. 186 (11): 1885-1896.
    連結:
  19. 21. Fradin C., M. Kretschmar, T. Nichterlein, C. Gaillardin, C. d’Enfert, and B. Hube. 2003. Stage-specific gene expression of Candida albicans in human blood. Mol. Microbiol. 47 (6): 1523-1543.
    連結:
  20. 22. Fradin C., P. De Groot, D. MacCallum, M. Schaller, F. Klis, F. C. Odds, and B. Hube. 2005. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microl. 56 (2): 397-415.
    連結:
  21. 23. Gold O. G., H. V. Jordan, and J. Van Houte. 1973. A selective medium for Streptococcus mutans. Arch. Oral Biol. 18: 1357-64.
    連結:
  22. 24. Graham M. R., L. M. Smoot, C. A. Lux Miigliaccio, K. Virtaneva, D. E. Sturdevant, S. F. Porcella, M. J. Federle, G. J. Adams, J. R. Scott, and J. M. Musser. 2002. Virulence control in group A streptococcus by a two-component gene regulatory system: Global expression profiling and in vivo infection modeling. Proc. Natl. Acad. Sci. 99:13855-13860.
    連結:
  23. 25. Graham M. R., K. Virtaaneva, S. F. Porcella, W. T. Barry, B. B. Gowen, C. R. Johnson, F. A. Wright, and J. M. Musser. 2005. Group A streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival stragies. Am. J. Pathol. 166:455-465.
    連結:
  24. 26. Green J., and M. S. Paget. 2004. Bacterial redox sensors. Nat. Rev. Microbiol. 2: 954-966.
    連結:
  25. 27. Groote M. A., U. A. Ochsner, M. U. Shiloh, C. Nathan, J. M. McCord, M. C. Dinauer, S. J. Libby, A. Vazquez-Torres, Y. Xu, and F. C. Fang. 1997. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc. Natl. Acad. Sci. 94: 13997-14001.
    連結:
  26. 29. Hidalgo E., H. Ding, and B. Demple. 1997. Redox signal transduction: mutations shifting [2Fe-2S] centers of the SoxR sensor-regulator to the oxidized form. Cell 88: 121-129.
    連結:
  27. 31. Idone V., S. Brendtro, R. Gillespie, S. Kocaj, E. Peterson, M. Rendi, W. Warren, S. Michalek, K. Krastel, D. Cvitkovitch, and G. Spatafora. 2003. Effect of an orphan response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis. Infect. Immun. 71: 4351-4360.
    連結:
  28. 33. Jayaraman G. C., J. E. Penders, and R. A. Burne. 1997. Transcriptional analysis of Streptococcus mutans hrcA, grpE and dnaK genes and regulation of expression in response to heat shock and environmental acidification. Mol. Microbiol. 25: 329-341.
    連結:
  29. 34. Johansson P. B., F. Levander, U. von Pawel-Rammingen, T. Berggård, L. Björck, and P. James. 2005. The protein expression of Streptococcus pyogenes is significantly influenced by human plasma. J. Proteome Research. 4: 2302-2311.
    連結:
  30. 35. Kreikemeyer B., K. S. Mclver, and A. Podbielski. 2003. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microl. 11 (5): 224-232.
    連結:
  31. 36. Lei B., F. R. Deleo, N. P. Hoe, M. R. Graham, S. T. Mackie, R. L. Cole, M. Liu, H. R. Hill, D. E. Low, M. J. Federle, J. R. Scott, and J. M. Musser. 2001. Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nat. Med. 7 (12): 1298-1305.
    連結:
  32. 40. McCarty J. S., and G. C. Walker. 1991. DnaK as a thermometor: threonine-199 is site of autophosphrylation and is critical for ATPase activity. Proc. Natl. Acad. Sci. 88: 9513-9617.
    連結:
  33. 41. Nakano K., M. Tsuji, K. Nishimura, R. Normura, and T. Ooshima. 2006. Contribution of cell surface protein antigen PAc of Streptococcus mutans to bacteremia. Microbes Infect. 8: 114-121.
    連結:
  34. 42. Nathan C., and M. U. Shiloh. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. 97 (16): 8841-8848.
    連結:
  35. 43. Nomura R., K. Nakano, T. Ooshima. 2004. Contribution of glucan-binding protein C of Streptococcus mutans to bacteremia occurrence. Arch. Oral Biol. 49: 783-788.
    連結:
  36. 44. Permpanich P., M. J. Kowolik, and D. M. Galli. 2006. Resistance of fluorescent-labelled Actinobacillus actinomycetemcomitans strains to phagocytosis and killing by human neutrophils. Cell. Microbiol. 8 (1): 72-84.
    連結:
  37. 45. Poole L. B., M. Higuchi, M. Shimada, M. L. Calzi, and Y. Kamio. 2000. Streptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein. Free Radic. Biol. Med. 28 (1): 108-120.
    連結:
  38. 46. Presterl E., E. Rokita, W. Graninger, and A. M. Hirschl. 2001. Dysregulation of monocyte oxidative burst in streptococcal endocarditis. Eur. J. Clin. Invest. 31: 902-906.
    連結:
  39. 47. Qi F., J. Merritt, R. Lux, and W. Shi. 2004. Inactivation of the ciaH gene in Streptococcus mutans diminishes mutacin production and competence development, alters surose-dependent biofilm formation, and reduces stress tolerance. Infect. Immun. 72 (8): 4895-4899.
    連結:
  40. 48. Que Y. A., P. Francois, J. A. Haefliger, J. M. Entenza, P. Vaudaux, and P. Moreillon. 2001. Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis. Infect. Immun. 69: 6296-6302.
    連結:
  41. 49. Que Y. A., J. A. Haefliger, L. Piroth, P. Francois, E. Widmer, J. M. Entenza, B. Sinha, M. Herrmann, P. Francioli, P. Vaudaux, and P. Moreillon. 2005. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J. Exp. Med. 201: 1627-1635.
    連結:
  42. 50. Raschke W. C., S. Baird, and P. R. Nakoinz. 1978. Functional macrophage cell lines transformed by abelson leukemia virus. Cell 15 (1): 261-167.
    連結:
  43. 51. Sandin C., F. Carlsson, and G. Lindahl. 2006. Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes. Mol. Microbiol. 59 (1): 20-30.
    連結:
  44. 52. Sumimoto H., K. Miyano, and R. Takeya. 2005. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem. Biophys. Res. Commun. 338: 677-686.
    連結:
  45. 53. Svensater G., B. Sjogreen, and I. R. Hamiton. 2000. Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology 146 (Pt 1): 107-117.
    連結:
  46. 55. Tsuda H., Y. Yamashita, K. Toyoshima, N. Yamaguchi, T. Oho, Y. Nakano, K. Nagata, and T. Koga. 2000. Role of serotype-specific polysaccharide in the resistance of Streptococcus mutans to phagocytosis by human polymorphonuclear leukocytes. Infect. Immun. 68 (2): 644-650.
    連結:
  47. 56. Underhill D. M., and A. Ozinsky. 2002. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20: 825-52.
    連結:
  48. 57. Vazquez-Torres A., Y. Xu, J. Jones-Carson, D. W. Holden, S. M. Lucia, M. C. Dinauer, P. Mastroeni, and F. C. Fang. 2000. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science. 287: 1655-1658.
    連結:
  49. 58. Vriesema A. J. M., J. Dankert, and S. A. J. Zaat. 2000. A shift from oral to blood pH is a stimulus for adaptive gene expression of Streptococcus gordonii CH1 and induces protein against oxidative stress and enhanced bacterial growth by expression of msrA. Infect. Immun. 68 (3): 1061-1068.
    連結:
  50. 59. Voyich J. M., D. E. Sturdevant, K. R. Braughton, S. D, Kobayashi, B. Lei, K. Virtaneva, D. W. Dorward, J. M. Musser, and F. R. DeLeo. 2003. Genome-wide protective responsee used by group A streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. 100: 1996-2001.
    連結:
  51. 60. Voyich J. M., K. R. Braughton, D. E. Sturdevant, C. Vuong, S. D. Kobayashi, S. F. Porcella, M. Otto, J. M. Musser, and F. R. DeLeo. 2004. Engagement of the pathogen survival response used by group A streptococcus to avert destruction by innate host defense. J. Immunol. 173: 1194-1201.
    連結:
  52. 62. Wiley J., and I. Sons. 1994. Measurement of bacterial ingestion and killing by macrophages. Current Protocols in Immunol. UNIT 14.6 Summplement 12.
    連結:
  53. 63. Yamamoto Y. Y. Kamio, and M. Higuchi. 1999. Cloning, nucleotide sequencing, and disruption of Streptococcus mutans glutathione reductase gene (gor). Biosci. Biotechnol. Biochem. 63 (6): 1056-1062.
    連結:
  54. 64. Yamamoto Y., M. Higuchi, L. B. Poole, and Y. Kamio. 2000. Role of the dpr product in oxygen tolerance in Streptococcus mutans. J. Bacteriol. 182 (13): 3740-3747.
    連結:
  55. 65. Yamamoto Y., L. B. Poole, R. R. Hantgan, and Y. Kamio. 2002. An Iron-Binding Protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. J. Bacteriol. 184 (11): 2931-2939.
    連結:
  56. 66. Yamamoto Y., K. Fukui, N. Koujin, H. Ohya, K. Kimura, and Y. Kamio. 2004. Regulation of the intracellular free iron pool by Dpr provides oxygen tolerance to Streptococcus mutans. J. Bacteriol. 186 (18): 5997-6002.
    連結:
  57. 67. Zheng M., F. Aslund, and G. Storz. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science. 279: 1718-1721.
    連結:
  58. 1. Ajdic D., W. M. McShan, R. E. McLaughlin, G. Savic, J. Chang, M. B. Carson, C. Primeaux, R. Tian, S. Kenton, H. Jia, S. Lin, Y. Qian, S. Li, H. Zhu, F. Najar, H. Lai, J. White, B. A. Roe, and J. J. Ferretti. 2002. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. 99: 14434-14439.
  59. 2. Bender G. R., S. V. Sutton, and R. E. Marquis. 1986. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect. Immun. 53: 1134-1138.
  60. 28. Hamada S., and H. D. Slade. 1980. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 44: 331-84.
  61. 30. Higuchi M., Y. Yamamoto, L. B. Poole, M. Shimada, Y. Sato, N. Takahashi, and Y. Kamio. 1999. Function of two types of NADPH oxidases in energy metabolism and oxidative stress of Streptococcus mutans. J. Bacteriol. 181 (19): 5940-5947.
  62. 32. Jansen W. T. M., J. Gootjes, M. Zelle, D. V. Madore, J. Verhoef, H. Snippe, and A. F. M. Verheul. 1998. Use of highly encapsulated Streptococcus pneumoniae Strains in a Flow-cytometric assay for assessment of the phagocytic capacity of serotype-specific antibodies. Clin. Diagn. Lab. Immunol. 5 (5): 703-710.
  63. 37. Loesche W. J. (ed.). 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50 (4): 353-380.
  64. 38. Manca C., S. Paul, C. E. Barry III, V. H. Freedman, and G. Kaplan. 1999. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect. Immun. 67 (1): 74-79.
  65. 39. Maqsood M. E., and M. M. Bashir. 2005. Blood-dependent redox activity during extracorporeal circulation in health and disease. The Cardiology. 1 (13): 156-157.
  66. 54. Thomas E. L., and K. A. Pera. 1983. Oxygen metabolism of Steptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide. J. Bacteriol. 154 (3): 1236-1244.
  67. 61. Voyich J. M., K. R. Braughton, D. E. Sturdevant, A. R. Whitney, B. Säid-Salim, S. F. Porcella, R. D. Long, D. W. Dorward, D. J. Gardner, B. N. Kreiswirth, J. M. Musser, and F. R. DeLeo. 2005. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J. Immunol. 175: 3907-3919.