Title

利用奈米金屬團簇製備奈米結構於光電元件之應用

Translated Titles

Using metallic nanoclusters to prepare nanostructures for optoelectronic device applications

DOI

10.6342/NTU.2012.01764

Authors

陳宜群

Key Words

金屬輔助化學蝕刻 ; 侵入式奈米金團簇 ; 微米奈米複合結構 ; 廣角度寬波段抗反射層 ; 矽太陽能電池 ; metal-assisted chemical etching ; intruded gold nanoclusters ; micro-nano hybrid structure ; omnidirectional broadband antireflection ; silicon solar cell

PublicationName

臺灣大學材料科學與工程學研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

陳學禮

Content Language

繁體中文

Chinese Abstract

抗反射層由於能夠減少表面反射增加入光量,在太陽能電池中扮演著重要的角色。但入射太陽能電池的光線並不全是垂直元件表面,抗反射層能否在大入射角度時還保持著同樣優良的抗反射效果便成了重要的議題。在本篇論文中我們利用兩種方式來製作寬波段廣角度的抗反射層,第一種則是利用侵入式奈米金團簇蝕刻粗糙化矽基板製作微米奈米複合結構,藉由光學量測可以得知其擁有非常良好的寬波段廣角度抗反射效果,在垂直照射時平均反射率僅1.64%,在各種角度照射的情形下都擁有比市售太陽能電池抗反射層更好的抗反射特性。除了優秀的抗反射特性之外,利用侵入式奈米金團簇作為觸媒再配合超音波震盪進行蝕刻可以大幅加速蝕刻反應,使我們可以在數秒鐘之內得到特性良好的抗反射層。另一種是利用多層介電質薄膜結合粗糙化矽基板製作自我複製結構,針對不同情況我們設計了具結構的光學薄膜,透過模擬計算可以得知該結構比一般市售太陽能電池的抗反射層擁有更好的抗反射效果,透過實際在市售太陽能電池上外加我們所設計之光學薄膜,太陽能電池所輸出的光電流在任何入射角度情形下皆有所提升。 另外針對新穎的侵入式奈米金團簇,我們對其基本性質作一些探討,例如矽基板上原生氧化層厚度對其分佈密度的影響、後續熱處理對其分佈的影響以及侵入式奈米金團簇能夠提升蕭特基矽光偵測器的偵測力(Detectivity)等。另外我們利用侵入式奈米金屬團簇來蝕刻氮化鎵基板,並觀察到侵入式奈米金屬團簇亦能夠催化蝕刻液對於氮化鎵的蝕刻反應,藉由光致發光(PL)光譜能夠得知這些蝕刻的結構能夠有效地提升氮化鎵的光萃取效率,具有結構的氮化鎵出光量可以達到原先的1.72倍。

English Abstract

The antireflective coatings play an important role in solar cells due to its ability to reduce the reflection of light from the solar cell surface, and thus increase the light harvesting of solar cells. However, the incident angles of incoming light are not always normal to the solar cell surface. Therefore, to remain the great antireflective characteristic at large incident angles for the antireflective coatings become an essential issue. In this study, we fabricate the broadband omnidirectional antireflective structures in two ways. The first method is that we utilize the intruded gold nanoclusters (INC) to prepare micro-nano hybrid structures on a silicon substrate. The hybrid structures display great broadband omnidirectional antireflective characteristic, and the average reflectance is down to 1.64% under normal incidence. Besides, the reflectances of the hybrid structures under various incident angles are lower than that of the antireflective structures on conventional solar cells. Moreover, combining the INC method and the ultrasonic etching process can result in much faster process for preparing antireflective structures, making us obtain excellent antireflective structures within just a few seconds. The other method is to deposit dielectric multilayer films on textured silicon substrate for fabricating the autocloning structures. We design two kinds of autocloning structures, and we conclude from the simulation results that these structures exhibit better antireflective characteristic than that of the antireflective structures on the conventional solar cells. By applying the designed optical thin films onto a commercial solar cell, we found the photocurrent of the solar cell was increased at all incident angles. In the last, we studied the mechanisms of novel INC method, such as the influence of native oxide thicknesses on the distribution of the nanoclusters, the effect of thermal treatment on the distribution of the nanoclusters, and to enhance the detectivity of a schottky photodetector. Besides, we utilized the INC method to prepare textured structure on GaN substrates. And we have proved that the INC-assisted etching of GaN is practical as well. According to the photoluminescence (PL) measurement, we observed that these textured structures can enhance the light extraction efficiency on GaN surface, and the PL intensity can be increased by a factor of 1.72.

Topic Category 工學院 > 材料科學與工程學研究所
工程學 > 工程學總論
Reference
  1. 1. Hylton, J. D.; Burgers, A. R.; Sinke, W. C., Alkaline etching for reflectance reduction in multicrystalline silicon solar cells. J Electrochem Soc 2004, 151 (6), G408-G427.
    連結:
  2. 2. Papet, P.; Nichiporuk, O.; Kaminski, A.; Rozier, Y.; Kraiem, J.; Lelievre, J. F.; Chaumartin, A.; Fave, A.; Lemiti, M., Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching. Sol Energ Mat Sol C 2006, 90 (15), 2319-2328.
    連結:
  3. 3. Chang, Y. M.; Shieh, J.; Juang, J. Y., Subwavelength Antireflective Si Nanostructures Fabricated by Using the Self-Assembled Silver Metal-Nanomask. J Phys Chem C 2011, 115 (18), 8983-8987.
    連結:
  4. 4. Sun, C. H.; Jiang, P.; Jiang, B., Broadband moth-eye antireflection coatings on silicon. Appl Phys Lett 2008, 92 (6).
    連結:
  5. 5. Srivastava, S. K.; Kumar, D.; Singh, P. K.; Kar, M.; Kumar, V.; Husain, M., Excellent antireflection properties of vertical silicon nanowire arrays. Sol Energ Mat Sol C 2010, 94 (9), 1506-1511.
    連結:
  6. 6. Liu, Y. P.; Lai, T.; Li, H. L.; Wang, Y.; Mei, Z. X.; Liang, H. L.; Li, Z. L.; Zhang, F. M.; Wang, W. J.; Kuznetsov, A. Y.; Du, X. L., Nanostructure Formation and Passivation of Large-Area Black Silicon for Solar Cell Applications. Small 2012, 8 (9), 1392-1397.
    連結:
  7. 7. Hung, Y. J.; Lee, S. L.; Wu, K. C.; Tai, Y.; Pan, Y. T., Antireflective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes. Opt Express 2011, 19 (17), 15792-15802.
    連結:
  8. 8. Chhajed, S.; Schubert, M. F.; Kim, J. K.; Schubert, E. F., Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics. Appl Phys Lett 2008, 93 (25).
    連結:
  9. 9. Kuo, M. L.; Poxson, D. J.; Kim, Y. S.; Mont, F. W.; Kim, L. K.; Schuhert, E. F.; Lin, S. Y., Realization of a near-perfect antireflection coating for silicon solar energy utilization. Opt Lett 2008, 33 (21), 2527-2529.
    連結:
  10. 10. Leem, J. W.; Song, Y. M.; Yu, J. S., Broadband wide-angle antireflection enhancement in AZO/Si shell/core subwavelength grating structures with hydrophobic surface for Si-based solar cells. Opt Express 2011, 19 (19), A1155-A1164.
    連結:
  11. 11. Leem, J. W.; Song, Y. M.; Lee, Y. T.; Yu, J. S., Effect of etching parameters on antireflection properties of Si subwavelength grating structures for solar cell applications. Appl Phys B-Lasers O 2010, 100 (4), 891-896.
    連結:
  12. 12. Ko, Y. H.; Yu, J. S., Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings. Opt Express 2011, 19 (1), 297-305.
    連結:
  13. 13. Leem, J. W.; Joo, D. H.; Yu, J. S., Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells. Sol Energ Mat Sol C 2011, 95 (8), 2221-2227.
    連結:
  14. 14. Park, B. D.; Leem, J. W.; Yu, J. S., Bioinspired Si subwavelength gratings by closely-packed silica nanospheres as etch masks for efficient antireflective surface. Appl Phys B-Lasers O 2011, 105 (2), 335-342.
    連結:
  15. 15. Leem, J. W.; Yu, J. S., Broadband and wide-angle antireflection subwavelength structures of Si by inductively coupled plasma etching using dewetted nanopatterns of Au thin films as masks. Thin Solid Films 2011, 519 (11), 3792-3797.
    連結:
  16. 16. Huang, Y. F.; Chattopadhyay, S.; Jen, Y. J.; Peng, C. Y.; Liu, T. A.; Hsu, Y. K.; Pan, C. L.; Lo, H. C.; Hsu, C. H.; Chang, Y. H.; Lee, C. S.; Chen, K. H.; Chen, L. C., Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotechnology 2007, 2 (12), 770-774.
    連結:
  17. 17. Kawakami, S.; Hanaizumi, O.; Sato, T.; Ohtera, Y.; Kawashima, T.; Yasuda, N.; Takei, Y.; Miura, K., Fabrication of 3D photonic crystals by autocloning and its applications. Electron Comm Jpn 2 1999, 82 (9), 43-52.
    連結:
  18. 18. Li, X.; Bohn, P. W., Metal-assisted chemical etching in HF/H(2)O(2) produces porous silicon. Appl Phys Lett 2000, 77 (16), 2572-2574.
    連結:
  19. 19. Chartier, C.; Bastide, S.; Levy-Clement, C., Metal-assisted chemical etching of silicon in HF-H2O2. Electrochim Acta 2008, 53 (17), 5509-5516.
    連結:
  20. 20. Huang, Z. P.; Geyer, N.; Werner, P.; de Boor, J.; Gosele, U., Metal-Assisted Chemical Etching of Silicon: A Review. Adv Mater 2011, 23 (2), 285-308.
    連結:
  21. 21. Chattopadhyay, S.; Li, X. L.; Bohn, P. W., In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching. J Appl Phys 2002, 91 (9), 6134-6140.
    連結:
  22. 22. Peng, K. Q.; Hu, J. J.; Yan, Y. J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S. T.; Zhu, J., Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater 2006, 16 (3), 387-394.
    連結:
  23. 23. Kim, J.; Han, H.; Kim, Y. H.; Choi, S. H.; Kim, J. C.; Lee, W., Au/Ag Bilayered Metal Mesh as a Si Etching Catalyst for Controlled Fabrication of Si Nanowires. Acs Nano 2011, 5 (4), 3222-3229.
    連結:
  24. 24. Megouda, N.; Piret, G.; Galopin, E.; Coffinier, Y.; Hadjersi, T.; Elkechai, O.; Boukherroub, R., Lithographically patterned silicon nanostructures on silicon substrates. Appl Surf Sci 2012, 258 (16), 6007-6012.
    連結:
  25. 25. Huang, Z. P.; Fang, H.; Zhu, J., Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Adv Mater 2007, 19 (5), 744-748.
    連結:
  26. 26. Huang, Z. P.; Shimizu, T.; Senz, S.; Zhang, Z.; Zhang, X. X.; Lee, W.; Geyer, N.; Gosele, U., Ordered Arrays of Vertically Aligned [110] Silicon Nanowires by Suppressing the Crystallographically Preferred Etching Directions. Nano Letters 2009, 9 (7), 2519-2525.
    連結:
  27. 27. Fang, H.; Wu, Y.; Zhao, J. H.; Zhu, J., Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology 2006, 17 (15), 3768-3774.
    連結:
  28. 28. Peng, K. Q.; Zhu, J., Simultaneous gold deposition and formation of silicon nanowire arrays. J Electroanal Chem 2003, 558, 35-39.
    連結:
  29. 29. Wan, D. H.; Chen, H. L.; Chuang, S. Y.; Yu, C. C.; Lee, Y. C., Using Self-Assembled Nanoparticles to Fabricate and Optimize Subwavelength Textured Structures in Solar Cells. J Phys Chem C 2008, 112 (51), 20567-20573.
    連結:
  30. 30. Il Yeo, C.; Song, Y. M.; Jang, S. J.; Lee, Y. T., Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink. Opt Express 2011, 19 (19), A1109-A1116.
    連結:
  31. 31. Rykaczewski, K.; Hildreth, O. J.; Wong, C. P.; Fedorov, A. G.; Scott, J. H. J., Guided Three-Dimensional Catalyst Folding during Metal-Assisted Chemical Etching of Silicon. Nano Letters 2011, 11 (6), 2369-2374.
    連結:
  32. 32. Tseng, S. C.; Chen, H. L.; Yu, C. C.; Lai, Y. S.; Liu, H. W., Using intruded gold nanoclusters as highly active catalysts to fabricate silicon nanostalactite structures exhibiting excellent light trapping and field emission properties. Energ Environ Sci 2011, 4 (12), 5020-5027.
    連結:
  33. 33. Yasukawa, Y.; Asoh, H.; Ono, S., Site-selective chemical etching of GaAs through a combination of self-organized spheres and silver particles as etching catalyst. Electrochem Commun 2008, 10 (5), 757-760.
    連結:
  34. 34. Li, X. L.; Kim, Y. W.; Bohn, P. W.; Adesida, I., In-plane bandgap control in porous GaN through electroless wet chemical etching. Appl Phys Lett 2002, 80 (6), 980-982.
    連結:
  35. 35. Chuah, L. S.; Hassan, Z.; Abu Hassan, H., Enhanced UV photodetector responsivity in porous GaN/Si(111) by metal-assisted electroless etching. Semiconductor Photonics: Nano-Structured Materials and Devices 2008, 31, 39-41.
    連結:
  36. 36. Chuah, L. S.; Hassan, Z.; Abu Hassan, H., Optical characterization of nanoporous GaN through electroless wet chemical etching. Mater Sci-Poland 2008, 26 (3), 609-615.
    連結:
  37. 37. Wang, R. J.; Liu, D.; Zuo, Z. Y.; Yu, Q.; Feng, Z. B.; Xu, X. G., Metal-assisted electroless fabrication of nanoporous p-GaN for increasing the light extraction efficiency of light emitting diodes. Aip Adv 2012, 2 (1).
    連結:
  38. 38. Fujii, T.; Gao, Y.; Sharma, R.; Hu, E. L.; DenBaars, S. P.; Nakamura, S., Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Appl Phys Lett 2004, 84 (6), 855-857.
    連結:
  39. 39. Duan, B. K.; Bohn, P. W., High sensitivity hydrogen sensing with Pt-decorated porous gallium nitride prepared by metal-assisted electroless etching. Analyst 2010, 135 (5), 902-907.
    連結:
  40. 40. Williamson, T. L.; Guo, X. Y.; Zukoski, A.; Sood, A.; Diaz, D. J.; Bohn, P. W., Porous GaN as a template to produce surface-enhanced Raman scattering-active surfaces. J Phys Chem B 2005, 109 (43), 20186-20191.
    連結:
  41. 41. Liu, Y.; Xiong, Z. H.; Liu, Y.; Xu, S. H.; Liu, X. B.; Ding, X. M.; Hou, X. Y., A novel method of fabricating porous silicon material: ultrasonically enhanced anodic electrochemical etching. Solid State Commun 2003, 127 (8), 583-588.
    連結:
  42. 43. Nordstrom, M.; Johansson, A.; Nogueron, E. S.; Clausen, B.; Calleja, M.; Boisen, A., Investigation of the bond strength between the photo-sensitive polymer SU-8 and gold. Microelectron Eng 2005, 78-79, 152-157.
    連結:
  43. 45. Schmidt, P. F.; Adda, L. P., Interface-State Generation by Gold Diffusion through Sio2-Films on Silicon - Mos and Neutron-Activation Results. J Appl Phys 1974, 45 (4), 1826-1833.
    連結:
  44. 46. Madams, C. J.; Morgan, D. V.; Howes, M. J., Migration of Gold Atoms through Thin Silicon-Oxide Films. J Appl Phys 1974, 45 (11), 5088-5090.
    連結:
  45. 47. Wilcox, W. R.; Lachapelle, T. J., Mechanism of Gold Diffusion into Silicon. J Appl Phys 1964, 35 (1), 240-246.
    連結:
  46. 48. Collins, C. B.; Carlson, R. O.; Gallagher, C. J., Properties of Gold-Doped Silicon. Phys Rev 1957, 105 (4), 1168-1173.
    連結:
  47. 50. Sundaravel, B.; Sekar, K.; Kuri, G.; Satyam, P. V.; Dev, B. N.; Bera, S.; Narasimhan, S. V.; Chakraborty, P.; Caccavale, F., XPS and SIMS analysis of gold silicide grown on a bromine passivated Si(111) substrate. Appl Surf Sci 1999, 137 (1-4), 103-112.
    連結:
  48. 51. Hugelmann, M.; Schindler, W., Schottky diode characteristics of electrodeposited Au/n-Si(111) nanocontacts. Appl Phys Lett 2004, 85 (16), 3608-3610.
    連結:
  49. 52. Tamboli, A. C.; Hirai, A.; Nakamura, S.; DenBaars, S. P.; Hu, E. L., Photoelectrochemical etching of p-type GaN heterostructures. Appl Phys Lett 2009, 94 (15).
    連結:
  50. 42. Hembree, D. R.; Akram, Salman. Method and Apparatus for Ultrasonic Wet Etching of Silicon. U.S. Patent 6,224,713 B1, May 1, 2001.
  51. 44. Calcagno, B. O.; Hart, K. R.; Crone, W. C. Adhesion Strength in Metal/Polymer Composites. Experimental and Applied Mechanics 2011, 6, 149-155.
  52. 49. Zhang, X. G. Electrochemistry of Silicon and Its Oxide; Kluwer Academic/Plenum Publishers: New York, 2001; p 65.