地下集水設施應用在形貌變動河川 之定常與序率模擬及現地率定

Translated Titles

Groundwater extraction from a geomorphically active river:field calibration of deterministic and stochastic models





Key Words

河床演育 ; 序率模式 ; 最大概似法 ; 地下水流 ; 地下堤堰 ; method of fundamental solutions ; 自由邊界問題 ; riverbed evolution ; stochastic model ; maximum likelihood estimation ; groundwater flow ; buried weir ; method of fundamental solutions ; free boundary problem



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本篇論文在探索地下取水施設作為形貌變動河川取水工的潛能。勤和堰計劃在荖濃溪取水,規劃堰址歷經劇烈的河床高程變動,在莫拉克風災此單一事件中,河床即抬升有20公尺之譜。在此等條件下,評估各式地下取水方案。為了量化河床變動的潛勢,採用序率模式並以長時間尺度的地質資料及近期密集的水文記錄率定。另建立一個三維地下水的定常模式,用以模擬河川質中的流動行為。此模式以method of fundamental solutions為基底,並以自由邊界條件解算地下水位。並以現地橋梁工程,施工中的沉箱進行全尺度之抽水試驗,用以率定及驗證地下水模式。最後,利用上述模式,評估在變動河川中地下水取水施設的表現。

English Abstract

The thesis explores the potential of groundwater extraction as a method of water derivation from a geomorphologically active river. The case chosen is the Qingho derivation of Laonong River, where large elevation changes have been recorded. Due to Typhoon Morakot, for instance, the river bed rose 20 meters in a single event. For such condition we evaluate different groundwater extraction schemes. To characterize potential river elevation change, we propose a stochastic model calibrated with long term geological data and modern hydrological observations. A deterministic 3D groundwater flow model is constructed to simulate flow through the alluvial fill. The model is based on the method of fundamental solutions and takes the water table as a free boundary. Field calibration and verification is done based on a full-scale drawdown test conducted at a bridge pier near the site. Finally, we apply the tools to evaluate the performance of different groundwater extraction schemes, under changing river conditions.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
  1. Capart, H., Hsu, J. P. C., Lai, S. Y. J. & Hsieh, M.-L., 2010. Formation and decay of a tributary-dammed lake, Laonong River, Taiwan. Water Resources Research, Volume 44, art. no. w11201.
  2. Cox, J., Ingersoll, J. & Ross, S., 1985. A Theory of the term structure of interest rates.. Econometrica, 53(2), 385-408.
  3. Heath, R. C., 1983. Basic Ground-Water Hydrology. Reston, Virginia: U.S. Geological survey.
  4. Hsieh, M.-L. & Chyi, S.-J., 2010. Late Quaternary mass-wasting records and formation of fan terraces in the Chen-yeo-lan and Lao-nung catchments, central-southern Taiwan. Quaternary Science Reviews, 29(11-12), 1399-1418.
  5. Kladivko, K., 2007. Maximum Likelihood Estimation of the Cox-Ingersoll-Ross Process: The MATLAB Implementa-. s.l., Technical Computing Prague.
  6. WRA, 2003. 曾文水庫越域引水計畫 : 環境影響評估報告書 , 臺北市: 經濟部水利處.
  7. 平野, 久美子, 2009. 水の奇跡を呼んだ男: 日本初の環境型ダムを台湾につくった鳥居信平. 東京都: 產經新聞出版.