Title

抗氧化及抑制黃嘌呤氧化酶成分在相思樹木材之縱徑向分布

Translated Titles

Longitudinal and Radial Distribution of Antioxidant and Xanthine Oxidase Inhibitory Compounds in Acacia confusa wood

Authors

黃于庭

Key Words

相思樹 ; 抗氧化活性 ; 縱向分布 ; 徑向分布 ; 移行材 ; 黃嘌呤氧化酶 ; Acacia confusa ; antioxidant activity ; longitudinal distribution ; radial distribution ; transition zone ; xanthine oxidase

PublicationName

臺灣大學森林環境暨資源學研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

張上鎮

Content Language

繁體中文

Chinese Abstract

相思樹(Acacia confusa)為臺灣本土樹種,其心材、樹皮、葉子、枝條、花及花苞已被證實具有良好之抗氧化活性。為了解相思樹縱向及徑向之活性成分分布及生物活性差異,本研究將單株相思樹由樹幹基部至樹頂依高度分為4區段,而各區段再由髓心往邊材以每7個年輪數分為5個區塊,以乙醇萃取其抽出物,並分別測定總酚類含量和總黃酮類含量,再評估清除DPPH自由基、清除超氧自由基、總抗氧化能力及抑制黃嘌呤氧化酶之生物活性。 試驗結果顯示,靠近基部心材之總酚類含量最高,其值介於43.4-44.8 mg GAE/g of wood,縱向之含量以樹木中段心材最多;而總黃酮類含量由邊材往髓心遞增,縱向之含量以樹木中段心材最多。心材各區塊清除DPPH及超氧自由基之評估結果,顯示不論縱向或徑向皆無顯著差異;基部之內層心材抑制黄嘌呤氧化酶之活性最佳,上述3種活性皆與總酚類及總黃酮類含量成正相關,其中又以抑制黄嘌呤氧化酶之活性與總黃酮類含量具有高度相關性。總抗氧化能力之徑向分布皆以邊材為佳,並呈現向髓心遞減趨勢,顯示邊材水溶性總抗氧化能力較佳。 進一步定量相思樹心材之4個活性成分:Melacacidin、4’-O-Methyl-melacacidin、Transilitin及Okanin;由定量結果得知Melacacidin和4’-O-Methyl-melacacidin為主要抽出成分。相思樹心材清除DPPH、超氧自由基及抑制黄嘌呤氧化酶之活性與上述4種化合物含量皆呈正相關,其中,又以清除DPPH自由基與Melacacidin和4’-O-Methyl-melacacidin具有高度相關性;而抑制黄嘌呤氧化酶之活性則與Transilitin和Okanin具有高度相關性,由此可知不同活性源自於不同化合物;且清除DPPH、超氧自由基及抑制黄嘌呤氧化酶之活性亦與4種化合物總量呈高度相關性。另外,相思樹活性成分定量結果得知,相較於邊材,4種黃酮類含量於移形材處大量產生,並由移形材向心材內累積。

English Abstract

Acacia confusa Merr. is an indigenous tree species that grows in Taiwan. It has been proven that their extractives of heartwood, bark, leaves, branch, flower and bud exhibited excellent antioxidant activities. The objectives of this study are to understand the difference of bioactivities between radial and longitudinal wood, and to analyze the distribution of bioactive constituents in A. confusa. Four sections were taken based on four different heights from the base to the top of trunk. Each section was divided into five blocks by every seven tree rings from pith to sapwood. All samples were extracted with ethanol, and their bioactivities were evaluated by DPPH radical scavenging (DPPH), superoxide radical scavenging assays (NBT), trolox equivalent antioxidant capacity (TEAC) assay and xanthine oxidase (XOD) inhibitory activity. In addition, total phenolic contents (TPC) and total flavonoids contents (TFC) were also examined. The results from TPC measurement showed that the TPC of heartwood at the tree base had the highest values (43.4-44.8 mg GAE/g of wood), and longitudinal distribution of TPC were higher in the middle trunk. Radial distribution of TFC gradually increased from sapwood toward pith, and longitudinal distribution of TFC were was higher in the middle trunk. Blocks of heartwood showed no significantly statistical difference on DPPH and NBT regardless of radial or longitudinal direction. Inner heartwood at the tree base possessed the best XOD inhibitory activity. The three above-mentioned activities have positive correlation with TPC and TFC, especially, XOD inhibitory activity has a high positive correlation with TPC and TFC. TEAC represents the inhibitory capability of water-soluble free radicals. TEAC was higher in sapwood, and radial distribution of TEAC decreased from the sapwood toward the pith of tree, revaling that extractives of sapwood had better water-soluble antioxidant activity. Furthermore, four main bioactive constituents, melacacidin, 4’-O-methyl-melacacidin, transilitin and okanin, of heartwood extract were quantified using HPLC. Results showed that melacacidin and 4'-O-methyl-melacacidin were two major compounds of the ethanolic extract. Based on statistical analyses, each content of four compounds showed positive correlation with DPPH, NBT and XOD inhibitory activity. Melacacidin and 4’-O-methyl-melacacidin has a high positive correlation with DPPH, transilitin and okanin has a high positive correlation with XOD inhibitory activity, especially. In addition, the total contents of four compounds showed strongly positive correlation with DPPH, NBT and XOD inhibitory activity. Besides, quantitative results obtained in this study showed that four main bioactive constituents were higher in TZ than in sapwood, then gradual accumulation to the other parts of heartwood.

Topic Category 生物資源暨農學院 > 森林環境暨資源學研究所
生物農學 > 森林
生物農學 > 生物環境與多樣性
Reference
  1. 參考文獻
  2. 丁昭義(1983)木材化學。國立編譯館。308頁。
  3. 王松永、丁昭義(1984)林產學上冊。臺灣商務印書館。639頁。
  4. 王升陽、徐麗芬、楊寧蓀(2003)傳統與科技結合-藥用與保健植物新發展。科學發展 364:50‐55。
  5. 王升陽(2007)躲在香料裡的精靈。科學發展 418:6‐9。
  6. 林修賢、蕭英倫、張上鎮(2008)相思樹葉子抽出物抗氧化活性之初探。中華林學季刊 41(2):249‐263。
  7. 李漢中、鄭森松、劉如芸、張上鎮(2003)不同地理品系土肉桂葉子精油之化學多態性。中華林學季刊 36(4):411-422。
  8. 李興進(2004)青脆枝栽培簡介。國立嘉義大學中草藥研發中心。嘉義,臺灣。pp. 11‐12。
  9. 李培芬(2007)臺灣的自然資源與生態資料庫III農林漁牧。行政院農業委員會林務局。215頁。
  10. 吳永昌、蘇燦隆(2004)抗癌天然藥物的研發。化學 62(2):173‐186。
  11. 何政坤(2003)臺灣紅豆杉-抗癌藥物紫杉醇的另一個家。科學發展 364:22‐29。
  12. 何政坤、張淑華(2007)利用青脆枝優良種苗枝葉生產喜樹鹼。林業研究專訊14(1):35。
  13. 林勝傑,謝堂州(1991)溶劑萃取後之木塊對香菇菌生長之影響。林業試驗所研究報告季刊 6(3):329‐337。
  14. 張豐吉、杜明宏(1988)臺灣重要樹種化學性質之研究(1)正常材與反應材性值之比較。中華林學季刊 21(1):77‐85。
  15. 張上鎮、王升陽、吳季玲(2000)臺灣杉木酚素之抗腫瘤潛力評估。中華林學季刊 33(2):277‐282。
  16. 張上鎮、鄭森松、王升陽(2009a)土肉桂飄香—葉子的神奇功效及應用。臺灣林業 35(1):116‐122。
  17. 張上鎮(2009b)相思樹心材之新用途-抗氧化與抗發炎功效。林業研究專訊 6(16):1‐4。
  18. 張淑華、何政坤(2008)利用毛狀根生產喜樹鹼。林業研究專訊 15(3):50。
  19. 胡大維、林耀堂、何政坤(1985)臺灣土肉桂葉部精油化學成分之天然變異。臺灣省林業試驗所抽印本 78:296‐313。
  20. 陳品方、張上鎮、吳懷慧(2002)土肉桂葉部精油及其成分之抗蟎活性。中華林學季刊 35(4):397‐403。
  21. 陳正和(2002)臺灣最普遍的森林喬木之一—相思樹。臺灣林業 28:59-61。
  22. 許立昇、古惠菁、張惠婷、張上鎮(2009)臺灣杉心材與土肉桂葉子應用於植物病原真菌防治之評估。中華林學季刊 42(3):411‐420。
  23. 楊玲玲(2004)青脆枝之天然物成分研究。國立嘉義大學中草藥研發中心。嘉義,臺灣。pp. 5-6。
  24. 楊士平、李慶國(2009)喜樹鹼及其衍生物的歷史回顧及展望。化學 67(1):45‐60。
  25. 賴明洲(1991)臺灣地區植物紅皮書-稀有及瀕危植物種類之認定與保護等級之評定。台北市行政院農委會。113頁。
  26. 鍾德生,蔡崇煌(2006)尿酸:在心血管疾病中的角色。基層醫學 21(10):268‐272。
  27. Agrawal, N. K., S. Kumar, S. P, Singh, S. Singh and I. P. Jain (2008) Hypoglycemic activity of dried seeds of Acacia tortilis. Indian J. Pharmacol. 40: 182-182.
  28. Ammar, R. B., M. B. Sghaier, J. Boubaker, W. Bhouri, A. Naffeti, I. Skandrani, I. Bouhlel, S. Kilani, K. Ghedira and L. Chekir-Ghedira (2008) Antioxidant activity and inhibition of aflatoxin B1-, nifuroxazide-, and sodium azide-induced mutagenicity by extracts from Rhamnus alaternus L. Chem.-Biol. Interact. 174(1): 1-10.
  29. Amusant, N., J. Beauchene, M. Fournier, G. Janin and M.F. Thevenon (2004) Decay resistance in Dicorynia guianensis Amsh.: analysis of inter-tree and intra-tree variability and relations with wood colour. Ann. For. Sci. 61: 373-380.
  30. Anagnost, S. E. and W. B. Smith. (1997) Comparative decay sapwood and heartwood of red maple. Wood and Fiber Sci. 29(2): 189-194.
  31. Asami, D. K., Y. J. Hong, D. M. Barrett and A. E. Mitchell (2003) Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 51(5): 1237-1241.
  32. Albert, L., T. Hofmann, Z. I. Nemeth, T. Retfalvi, J. Koloszar, S. Varga and I. Csepregi (2003) Radial variation of total phenol content in beech (Fagus sylvatica L.) wood with and without red heartwood. Holz Als Roh-und Werkst. 61(3): 227-230.
  33. Bamber, R. K. (1976) Heartwood, its function and formation. Wood Sci. Technol. 10(1):1-8.
  34. Barz, W., W. Bless, G. Borger-Papendorf, W. Gunia, U. Mackenbrock, D. Meier, C. Otto and E. Super (1990) Phytoalexins as part of induced defence reactions in plants: their elicitation, function and metabolism. Ciba Found. Symp. 154: 140-156.
  35. Berboucha, M., K. Ayouni, D. Atmani and M. Benboubetra (2010) Kinetic study on the inhibition of xanthine oxidase by extracts from two selected Algerian plants traditionally used for the treatment of inflammatory diseases. J. Med. Food 13(4): 896-904.
  36. Bradbury, G. J., B. M. Potts and C. L. Beadle (2010) Quantifying phenotypic variation in wood colour in Acacia melanoxylon R.Br. Forestry 83:153-162.
  37. Bergstrom, B. (2003) Chemical and structural changes during heartwood formation in Pinus sylvestris. Forestry 76: 45-53.
  38. Beritognolo, I., E. Magel, A. Abdel-Latif, J. P. Charpentier, C. Jay-Allemand and C. Breton (2002) Expression of genes encoding chalcone synthase, flavanone 3-hydroxylase and dihydroflavonol 4-reductase correlates with flavanol accumulation during heartwood formation in Juglans nigra. Tree Physiol. 22(5): 291-300.
  39. Chang, S. T., D. S. Y. Wang, C. L. Wu, S. G. Shiah, Y. H. Kuo and C. J. Chang (2000) Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry 55(3): 227-232.
  40. Chang, S. T., J. H. Wu, S. Y. Wang, P. L. Kang, N. S. Yang and L. F. Shyur (2001a) Antioxidant activity of extracts from Acacia confusa bark and heartwood. J. Agric. Food Chem. 49(7): 3420-3423.
  41. Chang, S. T., P. F. Chen and S. C. Chang (2001b) Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J. Ethnopharmac. 77(1): 123-127.
  42. Chang, T. C., H. T. Chang, C. L. Wu and S. T. Chang (2010a) Influences of extractives on the photodegradation of wood. Polym. Degrad. Stabil. 95(4): 516-521.
  43. Chang, T. C., H. T. Chang, C. L. Wu, H. Y. Lin and S. T. Chang (2010b) Stabilizing effect of extractives on the photo-oxidation of Acacia confusa wood. Polym. Degrad. Stabil. 95(9): 1518-1522.
  44. Carrodus, B. B. (1972) Variability in the proportion of heartwood formed in woody stems. New Phytol. 71: 713-718.
  45. Chen, H., M. Zhang and B. Xie (2005) Components and antioxidant activity of polysaccharide conjugate from green tea. Food Chem. 90(1-2): 17-21.
  46. Chien, S. C., C. W. Yang, Y. H. Tseng, H. S. Tsay, Y. H. Kuo and S. Y. Wang (2009) Lonicera hypoglauca inhibits xanthine oxidase and reduces serum uric acid in mice. Planta Med. 75(4): 302-306.
  47. Cheng, S. S., J. Y. Lin, Y. R. Hsui and S. T. Chang (2006) Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophloeum). Bioresour. Technol. 97: 306-312.
  48. Cheng, S. S., J. Y. Liu, C. Y. Lin, Y. R. Hsui, M. C. Lu, W. J. Wu and S. T. Chang (2008) Terminating red imported fire ants using Cinnamomum osmophloeum leaf essential oil. Bioresour. Technol. 99(4): 889-893
  49. Cheng, S. S., J. Y. Liu, C. G. Huang, Y. R. Hsui, W. J. Chen and S. T. Chang (2009) Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresour. Technol. 100(1): 457-464.
  50. Chou, C. H., C. Y. Fu, S. Y. Li and Y. F. Wang (1998) Allelopathic potential of Acacia confusa and related species in taiwan. J. Chem. Ecol. 24: 2131-2150.
  51. Chua, M. T., Y. T. Tung and S. T. Chang (2008) Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresour. Technol. 99(6): 1918-1925.
  52. Ciddi, V. and M. L. Shuler (2000) Camptothecine from callus cultures of Nothapodytes foetida. Biotechnol. Lett. 22(2): 129-132.
  53. Dastmalchi, K., H. J. Damien Dorman, M. Kosar and R. Hiltunen (2007) Chemical composition and in vitro antioxidant evaluation of a water-soluble Moldavian balm (Dracocephalum moldavica L.) extract. LWT - Food Sci. Technol. 40(2): 239-248.
  54. DeBell, J., J. J. Morrell and B. L. Gartner (1999) Within-stem variation in tropolone content and decay resistance of second-growth western red-cedar. Forest Sci. 45(2): 101-107.
  55. Dewick, P. M. (2009) Medicinal natural products-A biosynthetic approach. pp.168-171. John Wiley and Sons, Ltd., United Kingdom.
  56. Dung, N. T., V. K. Bajpai, A. Rahman, J. I. Yoon and S. C. Kang (2011) Phenolic contents, antioxidant and tyrosinase inhibitory activities of Lonicera japonica thumb. J. Food Biochem. 35(1): 148-160.
  57. Falade, O. S., A. S. Adekunle, M. A. Aderogba, S. O. Atanda, C. Harwood and S. R. Adewusi (2008) Physicochemical properties, total phenol and tocopherol of some Acacia seed oils. J. Sci. Food Agric. 88: 263-268.
  58. Fulzele, D. P., R. K. Satdive and B. B. Pol (2001) Growth and production of camptothecin by cell suspension cultures of Nothapodytes foetida. Planta Med. 67(1): 150-152.
  59. Ganesh, T., S. Saikat, C. Raja, K. S. V. Suresh, H. G. Raghavendra, M. Sevukarajan, M. Joydeb and D. Biplab (2010) In vitro antioxidant activity of Meyna laxiflora seeds. International Journal of Chemical and Pharmaceutical Sciences 1(1): 5-8.
  60. Gray, J (2004). Programmed cell death in plants. CRC press., Boca Raton CRC Press., Florida. 306 pp.
  61. Guo, S., Q. Deng, J. Xiao, B. Xie and Z. Sun (2007) Evaluation of antioxidant activity and preventing DNA damage effect of pomegranate extracts by chemiluminescence method. J. Agric. Food Chem. 55(8): 3134-3140.
  62. Hsieh, C. Y. and S. T. Chang (2010) Antioxidant activities and xanthine oxidase inhibitory effects of phenolic phytochemicals from Acacia confusa twigs and branches. J. Agric. Food Chem. 58(3):1578-1583.
  63. Holl, W. and K. Lendzian (1973) Respiration in the sapwood and heartwood of Robinia pseudoacacia. Phytochemistry 12: 975-977.
  64. Ho, P. J., C. K. Chou, Y. H. Kuo, L. C. Tu and S. F. Yeh (2007) Taiwanin A induced cell cycle arrest and p53-dependent apoptosis in human hepatocellular carcinoma HepG2 cells. Life Sci. 80(5): 493-503.
  65. Hillis, W. E. (1962) Wood extractives and their significance to the pulp and paper industries, pp.67-71. Academic Press, New York. 513 pp.
  66. Hillis, W. E. (1971) Distribution, properties and formation of some wood extractives. Wood Sci. Technol. 5(4): 272-289.
  67. Huang, Z. L., C. J. Tsai, S. A. Harding, R. Meilan and K. Woeste (2010) A cross-species transcriptional profile analysis of heartwood formation in black walnut. Plant Mol. Biol. Rep. 28(2): 222-230.
  68. Imai, T. (2012) Chemistry of Heartwood Formation. Mokuzai Gakkaishi. 58(1): 11-22.
  69. Ingram, L., R. Shmulsky, A. Dalton, F. W. Taylor and M. C. Templeton (2000) The measurement of volatile organic emissions from drying southern pine lumber in a laboratory-scale kiln. Forest Prod. J. 50(4): 91-94.
  70. Ivanova, D., D. Gerova, T. Chervenkov and T. Yankova (2005) Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J. Ethnopharmacol. 96(1-2): 145-150.
  71. Karaosmanoglu, H., F. Soyer, B. Ozen and F. Tokatli (2010) Antimicrobial and antioxidant activities of Turkish extra virgin olive oils. J. Agric. Food Chem. 58(14): 8238-8245.
  72. Kawato, Y., M. Aonuma, Y. Hirota, H. Kuga and K. Sato (1991) Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res. 51(16): 4187-4191.
  73. Kirby, A. J. and R. J. Chmidt (1997) The antioxidant activity of Chinese herbs for eczema and of placebo herbs-1. J. Ethnopharmacol. 56: 103-108.
  74. Kong, L. D., Y. Caia, W. W. Huanga, H. K. C. Christopher and R. X. Tan (2000) Inhibition of xanthine oxidase by some Chinese medicinal plants used to tat gout. J. Ethnopharmacol. 73: 199-207.
  75. Kujala, T. S., J. M. Loponen, K. D. Klika and K. Pihlaja (2000) Phenolics and betacyanins in red beetroot (Beta vulgaris) root: distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 48: 5338-5342.
  76. Lam, S. K. and T. B. Ng (2010a) A dimeric high-molecular-weight chymotrypsin inhibitor with antitumor and HIV-1 reverse transcriptase inhibitory activities from seeds of Acacia confusa. Phytomedicine 17(8–9): 621-625.
  77. Lam, S. K. and T. B. Ng (2010b) Acaconin, a chitinase-like antifungal protein with cytotoxic and anti-HIV-1 reverse transcriptase activities from Acacia confusa seeds. Acta Biochim. Pol. 57(3): 299-304.
  78. Lee, T. H. and C. H. Chou (2000) Flavonoid aglycones and indole alkaloids from the roots of Acacia confusa. J. Chin. Chem. Soc. 47(6): 1287-1290.
  79. Lee, J. C., W. C. Chen, S. F. Wu, C. K. Tseng, C. Y. Chiou, F. R. Chang, S. H. Hsu and Y. C. Wu (2011) Anti-hepatitis C virus activity of Acacia confusa extract via suppressing cyclooxygenase-2. Antiviral Res. 89(1): 35-42.
  80. Leo, L., A. Leone, C. Longo, D. A. Lombardi, F. Raimo and G. Zacheo (2008) Antioxidant compounds and antioxidant activity in “early potatoes”. J. Agric. Food Chem. 56(11): 4154-4163.
  81. Magel, E., C. Jayallemand and H. Ziegler (1993) Formation of heartwood substances in the stemwood of Robinia pseudoacacia L. II. Distribution of nonstructural carbohydrates and wood extractives across the trunk. Trees 8: 165-171.
  82. Manach, C., A. Scalbert, C. Morand, C. Remesy and L. Jimenez (2004) Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79(5): 727-747.
  83. Manigauha, A., H. Ali and M. U. Maheshwari (2009) Antioxidant activity of ethanolic extract of Piper betel leaves. J. Pharm. Res. 2(3): 491-494.
  84. Malan, E. (1993) 7,8,4’-Trihydroxy-3,3’-dimethoxyflavone from the heartwood of Acacia nigrescens. Phytochemistry 33(3): 733-734.
  85. McSweeney, C. S., J. Gough, L. L. Conlan, M. P. Hegarty, B. Palmer and D. O. Krause (2005) Nutritive value assessment of the tropical shrub legume Acacia angustissima: anti-nutritional compounds and in vitro digestibility. Anim. Feed Sci. Technol. 121: 175-190.
  86. Mukoda, T., B. X. Sun and A. Ishiguro (2001) Antioxidant activities of buckwheat hull extract toward various oxidative stress in vitro and in vivo. Biol. Pharm. Bull. 24(3): 209-213.
  87. Nadkarni, M. V., J. L. Hartwell, P. B. Maury and J. Leiter (1953) Components of podophyllin. XI. isolation of two new compounds from Podophyllum emodi Wall. J. Am. Chem. Soc. 75(6): 1308-1312.
  88. Niamke, F., N. Amusant, J. P. Charpentier, G. Chaix, Y. Baissac, N. Boutahar, A. Adima, S. Kati-Coulibaly and C. Jay-Allemand (2011) Relationships between biochemical attributes (non-structural carbohydrates and phenolics) and natural durability against fungi in dry teak wood (Tectona grandis L. f.). Ann. Forest Sci. 68(1): 201-211.
  89. Nickavar, B., M. Kamalinejad and H. Izadpanah (2007) In vitro free radical scavenging activity of five Salvia species. Pak. J. Pharm. Sci. 20(4): 291-294.
  90. Nikolova, M., C. Gussev and T. Nguyen (2010) Evaluation of the antioxidant action and flavonoid composition of Artemisia species extracts. Biotechnol. Biotechnol. Equip. 24(2): 101-103.
  91. Nobuchi, T. and J. Hasegawa (1994) Radial distribution of heartwood phenols and the cytological changes of ray parenchyma cells associated with heartwood formation in Japanese red pine (Pinus densiflora Sieb. et Zucc.). Bull. Kyoto Univ. For. 66: 132-142.
  92. Odenyo, A. A., P.O. Osuji, O. Karanfil and K. Adinew (1997) Microbiological evaluation of Acacia angustissima as a protein supplement for sheep. Anim. Feed Sci. Tech. 65: 99-112.
  93. Odenyo, A. A., P. O. Osuji, J. D. Reed, A. H. Smith, R. I. Mackie, C. S. McSweeney and J. Hanson (2003) Acacia angustissima: its anti-nutrients constituents, toxicity and possible mechanisms to alleviate the toxicity - a short review. Agroforest Syst. 59: 141-147.
  94. Parthasarathy, S., J. Bin Azizi, S. Ramanathan, S. Ismail, S. Sasidharan, M. I. Said and S. Mansor (2009) Evaluation of antioxidant and antibacterial activities of aqueous, methanolic and alkaloid extracts from Mitragyna speciosa (Rubiaceae family) leaves. Molecules 14(10): 3964-3974.
  95. Ray, D., Kh. Sharatchandra and I. S. Thokcham (2006) Antipyretic, antidiarrhoeal, hypoglycaemic and hepatoprotective activities of ethyl acetate extract of Acacia catechu Willd. in albino rats. Indian J. Pharmacol. 38: 408-413.
  96. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231-1237.
  97. Roja, G. and M. R. Heble (1994) The quinoline alkaloids camptothecin and 9-methoxycamptothecin from tissue cultures and mature trees of Nothapodytes foetida. Phytochemistry 36(1):65-66.
  98. Sato, M., N. Ramarathnam, Y. Suzuki, T. Ohkubo, M. Takeuchi and H. Ochi (1996) Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J. Agric. Food Chem. 44(1): 37-41.
  99. Scheffer, T. C. and E. B. Cowling (1966) Natural resistance of wood to microbial deterioration. Annu. Rev. Phytopathol. 4: 147-170.
  100. Stoilova, I., A. Krastanov, A. Stoyanova, P. Denev and S. Gargova (2007) Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem. 102: 764-770.
  101. Sharma, R. D. (1985) Hypoglycemic effect of gum Acacia in healthy human subjects. Nutr. Res. 5: 1437-1441.
  102. Shah, J. J., S. Baqui, R. C. Pandalai and K. R. Patel (1981) Histochemical changes in Acacia nilotica L. during transition from sapwood to heartwood. Iawa Bulletin 2(1): 31-36.
  103. Shen, Y. C., S. S. Wang, Y. L. Pan, K. L. Lo, R. Chakraborty, C. T. Chien, Y. H. Kuo and Y. C. Lin (2002) New taxane diterpenoids from the leaves and twigs of Taxus sumatrana. J. Nat. Prod. 65(12): 1848-1852.
  104. Shigo, A. L. and W. E. Hillis (1973) Heartwood, discolored wood, and microorganisms in living trees. Annu. Rev. Phytopathol. 11: 197-222.
  105. Shirwaikar, A., K. Rajendran and I. S. R. Punitha (2006) In vitro antioxidant studies on the benzyl tetra isoquinoline alkaloid berberine. Biol. Pharm. Bull. 29(9): 1906-1910.
  106. Taylor, A. M., B. L. Gartner and J. J. Morrell (2002) Heartwood formation and natural durability: a review. Wood Fiber Sci. 34 (4): 587-611.
  107. Thompson, A., J. Cooper and L. Ingram (2006) Distribution of terpenes in heartwood and sapwood of loblolly pine. Forest Prod. J. 56(7/8): 46-48.
  108. Tung, Y. T., J. H. Wu, C. C. Huang, H. C. Peng, Y. L. Chen, S. C. Yang and S. T. Chang (2009a) Protective effect of Acacia confusa bark extract and its active compound gallic acid against carbon tetrachloride-induced chronic liver injury in rats. Food Chem. Toxicol. 47(6): 1385-1392.
  109. Tung, Y. T., J. H. Wu, C. Y. Huang, Y. H. Kuo and S. T. Chang (2009b) Antioxidant activities and phytochemical characteristics of extracts from Acacia confusa bark. Bioresour. Technol. 100(1): 509-514.
  110. Tung, Y. T. and S. T. Chang (2010a) Inhibition of xanthine oxidase by Acacia confusa extracts and their phytochemicals. J. Agric. Food Chem. 58(2): 781-786.
  111. Tung, Y. T., C. A. Hsu, C. S. Chen, S. C. Yang, C. C. Huang and S. T. Chang (2010b) Phytochemicals from Acacia confusa heartwood extracts reduce serum uric acid levels in oxonate-induced mice: their potential use as xanthine oxidase inhibitors. J. Agric. Food Chem. 58(18):9936-9941.
  112. Tung, Y. T., W. C. Chang, P. S. Chen, T. C. Chang and S. T. Chang (2011) Ultrasound-assisted extraction of phenolic antioxidants from Acacia confusa flowers and buds. J. Sep. Science 34: 844-851.
  113. Quettier-Deleu, C., B. Gressier, J. Vasseur, T. Dine, C. Brunet, M. Luyckx, M. Cazin, J. C. Cazin, F. Bailleul and F. Trotin (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 72:35-42.
  114. Venalainen, M., A. M. Harju, P. Kainulainen, H. Viitanen and H. Nikulainen (2003) Variation in the decay resistance and its relationship with other wood characteristics in old Scots pines. Ann. Forest Sci. 60: 409-417.
  115. Wang, S. Y., J. H. Wu, L. F. Shyur, Y. H. Kuo and S. T. Chang (2002) Antioxidant activity of abietane-type diterpenes from heartwood of Taiwania cryptomerioides Hayata. Holzforschung 56(5): 487-492.
  116. Wang, S. Y., J. H. Wu, S. S. Cheng, C. P. Lo, H. N. Chang, L. F. Shyur and S. T. Chang (2004) Antioxidant activity of extracts from Calocedrus formosana leaf, bark, and heartwood. J. Wood Sci. 50(5): 422-426.
  117. Wang, S. Y., P. F. Chen and S. T. Chang (2005) Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresour. Technol. 96(7): 813-818.
  118. Wang, S. Y., C. W. Yang, J. W. Liao, W. W. Zhen, F. H. Chu and S. T. Chang (2008) Essential oil from leaves of Cinnamomum osmophloeum acts as a xanthine oxidase inhibitor and reduces the serum uric acid levels in oxonate-induced mice. Phytomedicine 15(11): 940-945.
  119. Wall, M. E., M. C. Wani, C. E. Cook, K. H. Palmer, A. T. McPhail and G. A. Sim (1966) Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminate. J. Am. Chem. Soc. 88(16): 3888-3890.
  120. Wu, J. H., Y. T. Tung, S. Y. Wang, L. F. Shyur, Y. H. Kuo and S. T. Chang (2005) Phenolic antioxidants from the heartwood of Acacia confusa. J. Agric. Food Chem. 53: 5917-5921.
  121. Wu, J. H., Y. T. Tung, S. C. Chien, S. Y. Wang, Y. H. Kuo, L. F. Shyur and S. T. Chang (2008) Effect of phytocompounds from the heartwood of Acacia confusa on inflammatory mediator production. J. Agric. Food Chem. 56(5): 1567-1573.
  122. Yang, J. M., S. Park, D. P. Kamdem, D. E. Keathley, E. Retzel, C. Paule, V. Kapur and K. H. Han (2003) Novel gene expression profiles define the metabolic and physiological processes characteristic of wood and its extractive formation in a hardwood tree species, Robinia pseudoacacia. Plant Mol. Biol. 52(5): 935-956.
  123. Yoshida, K., N. Futamura, M. Nishiguchi (2012) Collection of expressed genes from the transition zone of Cryptomeria japonica in the dormant season. J. Wood Sci. 58(2): 89-103.