Title

有機無機混合型太陽能電池與全背電極砷化鎵太陽能電池的二維模擬與優化

Translated Titles

Optimization of the PEDOT:PSS/SiNW Hybrid Solar Cells and All-Back-Contact GaAs Solar Cells with Two Dimensional Simulation

DOI

10.6342/NTU201602847

Authors

何冠穎

Key Words

混合型太陽能電池 ; 背電極太陽能電池 ; 單晶矽 ; 砷化鎵 ; 奈米結構 ; 數值模擬 ; PEDOT:PSS ; crystalline silicon ; silicon nanowire ; gallium arsenide ; hybrid solar cells ; back contact solar cells

PublicationName

臺灣大學光電工程學研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

吳育任

Content Language

英文

Chinese Abstract

本論文研究了兩種不同的太陽能電池,其一是PEDOT:PSS矽奈米線混合型太陽能電池,另一個則是全背電極砷化鎵太陽能電池,對於這兩種太陽能電池,我們依據其結構特性選擇了不同的模擬方法,在分析完其電性的表現後,我們針對兩種太陽能電池皆提出了優化的結構設計。 對於模擬PEDOT:PSS矽奈米線混合型太陽能電池,我們建構了一個可以模擬有機無機混合型太陽能電池的數值模型,並引入了高斯分布的尾態/介面態與高斯分布的陷阱來展現有機材料這方面的特性,而光場則是由二維有限差分時域法來計算。透過實驗量測的電流-電壓曲線來驗證模擬參數後,再針對PEDOT:PSS矽奈米線混合型太陽能電池做優化。目前優化後最佳的結構設計為增加p-type矽於鄰接PEDOT:PSS的奈米線區域,並在接近背電極再增加n-type矽,最高效率可望達到16.12%. 對於砷化鎵太陽能電池,我們採用全背電極的設計,並模擬了不同基極層厚度與n電極的寬度,藉由全背電極砷化鎵太陽能電池的電性表現來找出最佳化的設計。較厚的基極層可以吸收較多的太陽能,能有較高的吸收電流,但同時也造成較高的復合電流,所以基層厚度建議為1.5微米;較寬的n電極可以有較高的短路電流,但在施加偏壓時會在p-n接面造成較高的復合電流,導致填充因子的表現下降,因此n電極的寬度建議為600微米。根據以上建議的設計結構,模擬出的最佳效率可望達到25.12%。

English Abstract

The poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/silicon nanowire (SiNW) hybrid solar cell and the all-back-contact gallium arsenide (GaAs) solar cell are studied in this thesis. We used different simulation methods based on the characteristic of each solar cell to obtain the optical and electrical properties of each solar cell. After analyzing the electrical properties of the PEDOT:PSS/SiNW hybrid solar cell and the all-back-contact GaAs solar cell, further optimization is proposed, respectively. For the PEDOT:PSS/SiNW hybrid solar cell, a numerical model that capable of simulating the organic/inorganic hybrid solar cells was developed. Furthermore, a Gaussian distribution models of tail/interfacial states and trap states are addressed to present this characteristic when simulating the organic/inorganic hybrid solar cells. The 2D-FDTD model was used to model the optical field. After the simulation parameters are verified by fitting the current density-voltage (J-V) curve to the experimental results, the PEDOT:PSS/SiNW hybrid solar cell is optimized. The optimal structure is proposed with a p-type doping Si layer in the SiNW region adjoining to the PEDOT:PSS and an n-type doping Si layer at the rear Si layer near the bottom contact. The highest efficiency of 16.12% could be obtained after the optimization. For the GaAs solar cell, an all-back-contact is employed to the GaAs solar cell. By investigating the electrical properties of the all-back-contact GaAs solar cell, we are able to find the optimum structural design. A thicker base layer can reach a higher generation current, but it can also lead to a higher recombination. Therefore, the base layer thickness is suggested to be 1.5 um. For a wider n-contact width, a higher Jsc can be obtained, but the recombination at the p-n junction region becomes larger, which deteriorates the FF. Consequently, the n-contact width is recommended to be 600 um. The best efficiency up to 25.12% could be achieved with the suggested structure.

Topic Category 電機資訊學院 > 光電工程學研究所
工程學 > 電機工程
Reference
  1. [1] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices. Prentice Hall, 2001.
    連結:
  2. [2] A. Nardes, M. Kemerink, M. de Kok, E. Vinken, K. Maturova, and R. Janssen, “Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol,” Organic Electronics, vol. 9, no. 5, pp. 727 – 734, 2008.
    連結:
  3. [3] T. Koyama, T. Matsuno, Y. Yokoyama, and H. Kishida, “Photoluminescence of poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in the visible region,” Journal of Materials Chemistry C, vol. 3, no. 32, pp. 8307–8310, 2015.
    連結:
  4. [6] D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell,”Applied Physics Letters, vol. 28, no. 11, pp. 671–673, 1976.
    連結:
  5. [7] J. Britt and C. Ferekides, “Thin-film CdS/CdTe solar cell with 15.8% effciency,” Applied Physics Letters, vol. 62, no. 22, pp. 2851–2852, 1993.
    連結:
  6. [10] G. Conibeer, “Third-generation photovoltaics,” Materials Today, vol. 10, no. 11, pp. 42 – 50, 2007.
    連結:
  7. [11] G. Brown and J. Wu, “Third generation photovoltaics,” Laser and Photonics Reviews, vol. 3, no. 4, pp. 394–405, 2009.
    連結:
  8. [12] H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” Journal of Materials Research, vol. 19, pp. 1924–1945, 2004.
    連結:
  9. [13] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595–6663, 2010.
    連結:
  10. [15] A. Luque and A. Mart´ı, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Physical Review Letters, vol. 78, no. 26, p. 5014, 1997.
    連結:
  11. [17] W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” Journal of applied physics, vol. 32, no. 3, pp. 510–519, 1961.
    連結:
  12. [18] J. Ouyang, C.-W. Chu, F.-C. Chen, Q. Xu, and Y. Yang, “High-conductivity poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film and its application in polymer optoelectronic devices,” Advanced Functional Materials, vol. 15, no. 2, pp. 203–208, 2005.
    連結:
  13. [19] F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, J. Van Luppen, E. Verdonck, and L. Leenders, “PEDOT/PSS: synthesis, characterization, properties and applications,” Synthetic metals, vol. 135, pp. 115–117, 2003.
    連結:
  14. [20] H. Yan, T. Jo, and H. Okuzaki, “Highly conductive and transparent poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate)(PEDOT/PSS) thin films,” Polymer journal, vol. 41, no. 12, pp. 1028–1029, 2009.
    連結:
  15. [21] A. M. Nardes, M. Kemerink, M. De Kok, E. Vinken, K. Maturova, and R. Janssen, “Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol,” Organic electronics, vol. 9, no. 5, pp. 727–734, 2008.
    連結:
  16. [22] F. Zhi-Hui, H. Yan-Bing, S. Quan-Min, Q. Li-Fang, L. Yan, Z. Lei, L. Xiao-Jun, T. Feng, W. Yong-Sheng, and X. Rui-Dong, “Polymer solar cells based on a PEDOT:PSS layer spin-coated under the action of an electric field,” Chinese Physics B, vol. 19, no. 3, p. 038601, 2010.
    連結:
  17. [23] W.-Z. Cheng, J.-X. Liu, Y.-A. Mei, P. Zhang, T. Omi, Y. Takigami, K. Zhang, H. Okuzaki, and H. Yan., “A novel two-step spin-coating process for preparing PEDOT/PSS thin films and review of recent advances in spin coating,” Recent Patents on Materials Science, vol. 8, no. 2, pp. 176–182, 2016.
    連結:
  18. [25] Z. Ge, L. Xu, Y. Cao, T. Wu, H. Song, Z. Ma, J. Xu, and K. Chen, “Substantial improvement of short wavelength response in n-SiNW/PEDOT:PSS solar cell,” Nanoscale Research Letters, vol. 10, no. 1, pp. 1–8, 2015.
    連結:
  19. [26] T. Subramani, C.-C. Hsueh, H.-J. Syu, C.-T. Liu, S.-T. Yang, and C.-F. Lin, “Interface modification for effciency enhancement in silicon nanohole hybrid solar cells,” RSC Adv., vol. 6, pp. 12374– 12381, 2016.
    連結:
  20. [27] Y.-S. Kou, S.-T. Yang, S. Thiyagu, C.-T. Liu,J.-W. Wu, and C.-F. Lin, “Solution-processed carrier selective layers for high effciency organic/nanostructured-silicon hybrid solar cells,” Nanoscale, vol. 8, pp. 5379–5385, 2016.
    連結:
  21. [28] H. Wang, J. Wang, and Rusli, “Hybrid Si nanocones/PEDOT: PSS solar cell,” Nanoscale research letters, vol. 10, no. 1, pp. 1–8, 2015.
    連結:
  22. [30] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future,” Advanced Materials, vol. 12, no. 7, pp. 481–494, 2000.
    連結:
  23. [31] M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes,” Journal of Electroanalytical Chemistry, vol. 369, no. 1-2, pp. 87–92, 1994.
    連結:
  24. [32] T. Koyama, A. Nakamura, and H. Kishida, “Microscopic mobility of polarons in chemically doped polythiophenes measured by employing photoluminescence spectroscopy,” ACS Photonics, vol. 1, no. 8, pp. 655–661, 2014.
    連結:
  25. [34] P. Singh and N. Ravindra, “Temperature dependence of solar cell performance—an analysis,” Solar Energy Materials and Solar Cells, vol. 101, pp. 36 – 45, 2012.
    連結:
  26. [35] T. J. Silverman, M. G. Deceglie, B. Marion, S. Cowley, B. Kayes, and S. Kurtz, “Outdoor performance of a thin-film gallium-arsenide photovoltaic module,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 0103–0108, 2013.
    連結:
  27. [36] Y. Kane, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302–307, 1966.
    連結:
  28. [37] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, vol. 114, no. 2, pp. 185–200, 1994.
    連結:
  29. [38] D. Merewether, R. Fisher, and F. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” Nuclear Science, IEEE Transactions on, vol. 27, no. 6, pp. 1829–1833, 1980.
    連結:
  30. [39] C. kang Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, “Study on the optimization for current spreading effect of lateral GaN/InGaN LEDs,” Electron Devices, IEEE Transactions on, vol. 61, no. 2, pp. 511–517, 2014.
    連結:
  31. [40] C.-Y. Chen and Y.-R. Wu, “Studying the short channel effect in the scaling of the AlGaN/GaN nanowire transistors,” Journal of Applied Physics, vol. 113, no. 21, p. 214501, 2013.
    連結:
  32. [41] H.-W. Wang, P. Yu, Y.-R. Wu, H.-C. Kuo, E. Chang, and S.-H. Lin, “Projected effciency of polarization-matched p-InxGa1−xN/i-Iny Ga1−y N/n-GaN double heterojunction solar cells,” Photovoltaics, IEEE Journal of, vol. 3, no. 3, pp. 985–990, 2013.
    連結:
  33. [42] C.-K. Wu, C.-K. Li, and Y.-R. Wu, “Percolation transport study in nitride based LED by considering the random alloy fluctuation,” Journal of Computational Electronics, vol. 14, pp. 416–424, 2015.
    連結:
  34. [43] K.-T. Park, H.-J. Kim, M.-J. Park, J.-H. Jeong, J. Lee, D.-G. Choi, J.-H. Lee, and J.-H. Choi, “13.2% effciency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer- imprinted au mesh electrode,” Sci. Rep., vol. 5, p. 12093, 2015.
    連結:
  35. [44] Z. Liang, M. Su, H. Wang, Y. Gong, F. Xie, L. Gong, H. Meng, P. Liu, H. Chen, W. Xie, and J. Chen, “Characteristics of a silicon nanowires/PEDOT:PSS heterojunction and its effect on the solar cell performance,” ACS Applied Materials and Interfaces, vol. 7, no. 10, pp. 5830–5836, 2015.
    連結:
  36. [45] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, no. 2, pp. 185–200, 1994.
    連結:
  37. [46] M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 k,” Prog. Photovoltaics Res. Appl., vol. 3, pp. 189– 192, 1995.
    連結:
  38. [47] J. Gasiorowski, R. Menon, K. Hingerl, M. Dachev, and N. S. Sariciftci, “Surface morphology, optical properties and conductivity changes of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by using additives,” Thin Solid Films, vol. 536, pp. 211 – 215, 2013.
    連結:
  39. [49] J. H. Han, D.-H. Kim, and K. C. Choi, “Microcavity effect using nanoparticles to enhance the effciency of organic light-emitting diodes,” Opt. Express, vol. 23, no. 15, pp. 19863–19873, 2015.
    連結:
  40. [50] W. Wang, Y. Hao, Y. Cui, X. Tian, Y. Zhang, H. Wang, F. Shi, B. Wei, and W. Huang, “High-effciency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices,” Opt. Express, vol. 22, no. S2, pp. A376–A385, 2014.
    連結:
  41. [51] M. Rubin, “Optical properties of soda lime silica glasses,” Solar Energy Materials, vol. 12, no. 4, pp. 275 – 288, 1985.
    連結:
  42. [52] L. He, C. Jiang, Rusli, D. Lai, and H. Wang, “Highly effcient Si-nanorods/organic hybrid core-sheath heterojunction solar cells,” Applied Physics Letters, vol. 99, no. 2, p. 021104, 2011.
    連結:
  43. [53] Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S.-T. Lee, and B. Sun, “High effciency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact,” Energy Environ. Sci., vol. 8, pp. 297–302, 2015.
    連結:
  44. [54] J. Wang, H. Wang, A. B. Prakoso, A. S. Togonal, L. Hong, C. Jiang, and Rusli, “High effciency silicon nanowire/organic hybrid solar cells with two-step surface treatment,” Nanoscale, vol. 7, pp. 4559–4565, 2015.
    連結:
  45. [55] K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, “Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies,” Journal of Applied Physics, vol. 87, no. 1, pp. 295–298, 2000.
    連結:
  46. [56] T. Hu, F. Zhang, Z. Xu, S. Zhao, X. Yue, and G. Yuan, “Effect of UV-ozone treatment on ITO and post-annealing on the performance of organic solar cells,” Synthetic Metals, vol. 159, no. 7-8, pp. 754 – 756, 2009.
    連結:
  47. [57] D. J. Milliron, I. G. Hill, C. Shen, A. Kahn, and J. Schwartz, “Surface oxidation activates indium tin oxide for hole injection,” Journal of Applied Physics, vol. 87, no. 1, pp. 572–576, 2000.
    連結:
  48. [58] N. Reich, W. Van Sark, E. Alsema, S. Kan, S. Silvester, A. Van der Heide, R. Lof, and R. Schropp, “Weak light performance and spectral response of different solar cell types,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference, pp. 2120–2123, 2005.
    連結:
  49. [4] K. Chopra, P. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Progress in Photovoltaics: Research and Applications, vol. 12, no. 2-3, pp. 69–92, 2004.
  50. [5] A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Progress in photovoltaics: Research and applications, vol. 12, no. 2-3, pp. 113–142, 2004.
  51. [8] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9% efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Progress in Photovoltaics: Research and Applications, vol. 16, no. 3, pp. 235–239, 2008.
  52. [9] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% effciency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Progress in Photovoltaics: Research and Applications, vol. 11, no. 4, pp. 225–230, 2003.
  53. [14] R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Applied Physics Letters, vol. 90, no. 18, p. 183516, 2007.
  54. [16] D. Kぴonig, K. Casalenuovo, Y. Takeda, G. Conibeer, J. Guille-moles, R. Patterson, L. Huang, and M. Green, “Hot carrier solar cells: Principles, materials and design,” Physica E: Low-dimensional Systems and Nanostructures, vol. 42, no. 10, pp. 2862–2866, 2010.
  55. [24] P. Yu, C.-Y. Tsai, J.-K. Chang, C.-C. Lai, P.-H. Chen, Y.-C. Lai, P.-T. Tsai, M.-C. Li, H.-T. Pan, Y.-Y. Huang, C.-I. Wu, Y.-L. Chueh, S.-W. Chen, C.-H. Du, S.-F. Horng, and H.-F. Meng, “13% effciency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering,” ACS Nano, vol. 7, no. 12, pp. 10780–10787, 2013.
  56. [29] S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, “Hybrid silicon nanocone–polymer solar cells,” Nano Letters, vol. 12, no. 6, pp. 2971–2976, 2012.
  57. [33] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell effciency tables (version 47),” Progress in Photovoltaics: Research and Applications, vol. 24, no. 1, pp. 3–11, 2016.
  58. [48] A. Elschner, S. Kirchmeyer, W. Lovenich, U. Merker, and K. Reuter, PEDOT: principles and applications of an intrinsically conductive polymer. CRC Press, 2010.
  59. [59] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% record efficiency HIT solar cell on thin silicon wafer,” IEEE Journal of Photovoltaics, vol. 4, no. 1, pp. 96–99, 2014.