Title

二氧化錫奈米線以及氫氧化鋱/二氧化矽核-殼結構 光子晶體奈米複合材料之光學特性研究

Translated Titles

Optical Properties of SnO2 nanowires and SnO2-Tb(OH)3/SiO2 core/shell photonic crystals nanocomposites

Authors

呂孟霖

Key Words

二氧化錫 ; 奈米線 ; 氫氧化鋱/二氧化矽核-殼結構光子晶體 ; 光導 ; 雷射現象 ; SnO2 ; nanowire ; Tb(OH)3/SiO2 core/shell structure ; photonic crystal ; waveguide ; lasing

PublicationName

臺灣大學物理研究所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

陳永芳

Content Language

英文

Chinese Abstract

本論文中,我們主要研究二氧化錫奈米線、氫氧化鋱/二氧化矽核-殼結構光子晶體以及光子晶體上長二氧化錫奈米線的複合材料的發光特性,借由光激發螢光光譜 (PL) , 陰極射線激發螢光光譜 (CL) ,拉慢散射等實驗來研究其發光性質。這些研究對於此材料的應用上有很大的幫助。 藉由我們新製作由二氧化錫奈米線和氫氧化鋱/二氧化矽核-殼結構奈米球所形成的光子晶體之複合材料,我們可以看到激發螢光被侷限在光子晶體中由於光子晶體結構所構成的能帶可經由二氧化錫奈米線引導出來,而奈米線就相當於光導。由於有奈米線的存在,激發螢光的強度也會相當大程度的提高。這就很像日常生活中一個地下水庫裡存滿水,經由水管,可將水導出地球表面。因此我們稱這個新的奈米複合材料為光噴泉。我們將會呈現出二氧化錫奈米線和氫氧化鋱/二氧化矽核-殼結構奈米球所形成的光子晶體之複合材料的陰極射線激發螢光強度大量的提升相對於氫氧化鋱/二氧化矽核-殼結構光子晶體。 在這個新的氧化錫奈米線和氫氧化鋱/二氧化矽核-殼結構奈米球所形成的光子晶體之奈米複合材料上,我們發現可輕易的觀察到雷射現象。我們已經闡述了二氧化錫奈米線作為光導將侷限在光子晶體中的激發螢光導出來,就像是光的噴泉一樣;相對於單純的光子晶體來講,這個複合材料的發光大大的提升了,而這個材料提供一個很好的環境來造成受激發射,因此這新穎的材料在作成雷射原件上將非常有用。

English Abstract

In this thesis we report the study of optical properties of SnO2 nanowires, photonic crystal formed by Tb(OH)3/SiO2 core/shell nanospheres and SnO2-Tb(OH)3/SiO2 nanocomposites. Photoluminescence (PL), Cathodoluminescence (CL), Raman scattering have been performed. Some peculiar results have been obtained from our studies, which are very useful for the understanding as well as applications of these materials. Based on our newly developed nanocomposites consisting of SnO2 nanowires and photonic crystals based on Tb(OH)3/SiO2 core/shell nanoparticles,1-2 we will show that the light confined inside the photonic crystals due to the formation of stop band can be directed along SnO2 nanowires and gets into air. SnO2 nanowires now serve as a waveguide.3 Because most of the emission arising from Tb ions is directed along SnO2 nanowires, the output emission intensity can be greatly enhanced. This behavior is similar to the design of water fountain in our daily life, in which the water confined under ground is directed to the earth surface through a water pipe. In this thesis, we will show the giant enhancement of the CL emission intensity for the SnO2-Tb(OH)3/SiO2 nanocomposite compared to the pure Tb(OH)3/SiO2 photonic crystal. It is found that lasing behavior can be easily achieved using the nanocomposite consisting of SnO2 nanowires and photonic crystals (PCs) based on Tb(OH)3/SiO2 core/shell nanospheres. Due to the fact that the light output from SnO2 nanowires can be greatly enhanced, it therefore establishes an excellent environment for the observation of stimulated emission. The novel composites developed here should be very useful for the creation of new lasing devices.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理研究所
Reference
  1. Chapter 1
    連結:
  2. 6. J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, J. Phys. Chem. B 2002, 106, 3823.
    連結:
  3. 7. J. Q. Hu, Y. Bando, Q. L. Liu, and D. Golberg, Adv. Funct. Mater. 2003, 13, 493.
    連結:
  4. 8. D. Calestani, L. Lazzini, G. Salviati, and M. Zha, Cryst. Res. Technol. 2005, 40, 937.
    連結:
  5. 10. D. Cai, Y. Su, Y. Chen, J. Jiang, Z. He, and L. Chen, Mater. Lett. 2005, 59, 1984.
    連結:
  6. 12. M. Law, H. Kind, B. Messer, F. Kim, P. Yang, Angew. Chem. Int. Ed. Engl. 2002, 41, 2405.
    連結:
  7. 13. H. Yan et al., Adv. Mater. 2003, 15, 1907.
    連結:
  8. 14. H. Mass, A. Currao, G. Calzaferri, Angew. Chem. Int. Ed. 2002, 41, 2495.
    連結:
  9. 16. E. Yablonovitch, Phys. Rev. Lett. 1987, 58, 2059.
    連結:
  10. 17. S. John, Phys. Rev. Lett. 1987, 58, 2486.
    連結:
  11. 21. M. Skorobogatiy, and A. V. Kabashin, Appl. Phys. Lett. 2006, 89, 143518.
    連結:
  12. 25. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, Appl. Phys. Lett. 2007, 90, 193504.
    連結:
  13. 2. S. Perkowitz, Optical Characterization of Semiconductors: Infrard, Raman, and Photoluminescence Spectroscopy.
    連結:
  14. 3. H. J. Queisser, Phys. Rev. Lett. 1985, 54, 234.
    連結:
  15. 4. J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, J. Phys. Chem. B 2002, 106, 3823.
    連結:
  16. 5. J. Q. Hu, Y. Bando, Q. L. Liu, and D. Golberg, Adv. Funct. Mater. 2003, 13, 493.
    連結:
  17. 6. D. Calestani, L. Lazzini, G. Salviati, and M. Zha, Cryst. Res. Technol. 2005, 40, 937.
    連結:
  18. 8. D. Cai, Y. Su, Y. Chen, J. Jiang, Z. He, and L. Chen, Mater. Lett. 2005, 59, 1984.
    連結:
  19. 13. Y. Wu and P. Yang, Direct Observation of Vapor-Liquid-Solid Nanowire Growth, J. Am. Chem. Soc. 2001, 123, 3165.
    連結:
  20. 14. M. S. Gudiksen, J. Wang, and C. M. Lieber, Synthetic Control of the Diameter and Length of Single Crystal Semiconductor Nanowires, J. Phys. Chem. B 2001, 105, 4062.
    連結:
  21. 15. E. P. A. M. Bakkers and M. A. Verheijen, Synthesis of InP Nanotubes, J. Am. Chem. Soc. 2003, 125, 3440.
    連結:
  22. 16. X. H. Chen, M. Moskovits, Nano. Lett. 2007, 7, 807.
    連結:
  23. 1. Lin, Y. S.; Hung, Y.; Lin, H. Y.; Tseng, Y. H.; Chen, Y. F.; Mou, C. Y. Adv. Mater. 2007, 19, 577.
    連結:
  24. Reference
  25. 1. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z. L. Wang, Appl. Phys. Lett. 2002, 81, 1869.
  26. 2. M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, J. Phys. Chem. B 2003, 107, 659.
  27. 3. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, Adv. Mater. Weinheim, Ger. 2003, 15, 997.
  28. 4. S. V. Kalinin, J. Shin, S. Jesse, D. Geohegan, A. P. Baddorf, Y. Lilach, M. Moskovits, and A. Kolmakov, J. Appl. Phys. 2005, 98, 044503.
  29. 5. Q. H. Li, Y. J. Chen, Q. Wan, and T. H. Wang, Appl. Phys. Lett. 2004, 85, 1805.
  30. 9. G. Faglia, C. Batto, G. Sberveglieri, M. Zha, and A. Zappettini, Appl. Phys. Lett. 2005, 86, 011923.
  31. 11. D. Maestre, A. Cremades, and J. Piqueras. J. Appl. Phys. 2005, 97, 044316
  32. 15. Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, C. Y. Mou, Adv. Mater. 2007, 19, 577.
  33. 18. N. Tétreault, A. C. Arsenault, A. Mihi, S. Wong, V. Kitaev, I. Manners, H. Miguez, and G. A. Ozin, Adv. Mater. 2005, 17, 1912.
  34. 19. E. Feltin, G. Christmann, R. Butté, J-F. Carlin, M. Mosca, and N. Grandjean, Appl. Phys. Lett. 2006, 89, 071107.
  35. 20. R. K. Price IEEE J. Quan. Elec. 2006, 42, 667.
  36. 22. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett. 1996, 77, 3787.
  37. 23. J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, Appl. Phys. Lett. 2006, 89, 201102.
  38. 24. A. C. Arsenault, T. J. Clark T, G. V. Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. A. Ozin, Nat. Mater. 2006, 5, 175.
  39. Chapter 2
  40. Reference
  41. 1. R. A. Stradling and P. C. Klipstein, Growth and Characterisation of Semiconductors.
  42. 7. G. Faglia, C. Batto, G. Sberveglieri, M. Zha, and A. Zappettini, Appl. Phys. Lett. 2005, 86, 011923.
  43. 9. D. Maestre, A. Cremades, and J. Piqueras. J. Appl. Phys. 2005, 97, 044316
  44. 10. S. Banerjee, A. Dan, and D. Chakravorty, Review Synthesis of conducting nanowires, J. Mater. Sci. 2002, 37, 4261.
  45. 11. R. S. Wagner and W. C. Ellis, VLS mechanism, Appl. Phys. Lett. 1964, 4, 89.
  46. 12. Givarzikov, Growth of Whiskers by the Vapor-Liquid-Solid mechanism, E. Kaldis (Ed.), Current Topics in Materials Science 1978.
  47. 17. Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, C. Y. Mou, Adv. Mater. 2007, 19, 577.
  48. 18. V. L. Colvin, M. C. Schlamp, A. P. Alivisato, Nature 1994, 370, 34
  49. Chapter 3
  50. Reference
  51. 2. Chen, X. H.; Moskovits, M. Nano. Lett. 2007, 7, 807.D. J. Sirbuly, M. Law, J.C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, Science 2004, 305, 1269.
  52. 3. C. W. Chen, Y. F. Chen Appl. Phys. Lett. 2007, 90, 071104.J. Wiersig, Phys. Rev. A 2003, 67, 023807.G. R. Fowles, Introduction to Modern Optics. 1975.