Title

尼泊爾埋葬蟲族群在兩島嶼上的溫度適應

Translated Titles

Thermal adaptation in two island populations of burying beetles (Nicrophorus nepalensis Hope 1831)

DOI

10.6342/NTU201900713

Authors

范郁盟

Key Words

溫度適應 ; 表現曲線 ; 生活使 ; 繁殖 ; 存活 ; thermal adaptation ; performance curve ; life-history ; reproduction ; survival

PublicationName

臺灣大學生態學與演化生物學研究所學位論文

Volume or Term/Year and Month of Publication

2019年

Academic Degree Category

碩士

Advisor

沈聖峰

Content Language

繁體中文

Chinese Abstract

全球暖化對生物造成全面性的衝擊,生物如何適應不同的氣候差異,產生不同的溫度適應模式,是預測暖化如何影響生物續存的重要問題。過去探討生物如何適應不同的氣候主要有兩個假說:適應溫差的氣候變異度假說以及適應平均溫度的最佳溫度假說。生存及繁殖決定了生物的續存,但意義卻不相同,其適應模式也不可一概而論,而過去研究大多著重於生存方面的溫度適應,對於繁殖的溫度適應探討甚少,但繁殖才是生物終其一生的目標。我們以廣泛分布於亞洲的尼泊爾埋葬蟲為實驗物種,比較各溫度下不同族群繁殖表現的差異,以日本奄美族群及台灣合歡山族群進行比較,我們發現生存指標-溫度耐受度符合氣候變異度假說的預測,奄美族群耐受範圍大於合歡山族群。而繁殖方面兩族群對溫度的適應則是比較複雜,在繁殖成功率上兩族群並無顯著的不同,子代的品質也沒有顯著差異,但在埋葬行為方面合歡山族群成功埋葬屍體的比顯著高於奄美族群;而奄美族群雖然埋葬屍體的比例較低,但埋葬屍體後的繁殖成功率則顯著較高。且奄美族群成功埋葬屍體後產出的子代品質都高於合歡山族群,顯示兩族群有不同的繁殖策略。本研究結果顯示,溫度耐受度的適應比較簡單,溫度變異大的環境耐受度也要增加,符合氣候變異度假說的預測,而繁殖不同階段的適應明顯不同,表示繁殖是相對複雜的行為,從埋葬屍體到子代孵化,其中包含了不只一個行為表現,並且各自的適應模式並不相同,這說明了要充分了解氣候對生物適應的影響,除了生存以外也必須仔細考慮其他的生活史特徵與適應性成分。

English Abstract

Climate change has a wide range of influences on organisms. Understanding how organism adapt to thermal variation is critical to forecast the fate of species in the warming world. Most of the previous studies focused on species’ thermal tolerance, but not other important fitness components such as reproduction, varied across different thermal environments. Therefore, how the different fitness components were influenced by climate remains poorly understood. Here, we test two hypotheses about climate adaptation: climate variation hypothesis, and thermal optimum hypothesis, through investigating the thermal tolerance and breeding performance of two populations of burying beetles (Nicrophorus nepalensis Hope 1831) from different latitudes (Amami island: 28°15'12.7"N, and Mt. Hehuan: 24°10'48.2"N). We found that the range of thermal tolerance of the Amami population was broader than that of the Hehuan population, supporting the climate variation hypothesis. However, beetles from the Amami population had better breeding performance than those from the Hehuan population after successfully preparing their breeding resources (i.e. burying carcasses) in every tested temperature. On the other hand, beetles from the Hehuan population had better burying performance than those from Amami population especially in high temperature, and the two populations had no difference in finally fitness at every tested temperature. Our results showed that reproductive performance, which involved in multiple steps such as carcass burial, and larva hatching, is affected by more complicated mechanisms than that of adult physiological tolerance. Our findings also showed the necessity to comprehensively understand the adaptive models of different life history traits.

Topic Category 生命科學院 > 生態學與演化生物學研究所
生物農學 > 生物科學
Reference
  1. Addo-Bediako, A., S. L. Chown, and K. J. Gaston. 2000. Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London B: Biological Sciences 267:739-745.
  2. Alan Pounds, J., M. R. Bustamante, L. A. Coloma, J. A. Consuegra, M. P. L. Fogden, P. N. Foster, E. La Marca, K. L. Masters, A. Merino-Viteri, R. Puschendorf, S. R. Ron, G. A. Sánchez-Azofeifa, C. J. Still, and B. E. Young. 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161.
  3. Angilletta Jr, M. J., and M. J. Angilletta. 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press.
  4. Bala, M., and N. Singh. 2017. Geographical distribution of some forensically important species of beetles (Coleoptera: silphidae) from North India (INDIA).
  5. Barnett, T. P., D. W. Pierce, K. M. AchutaRao, P. J. Gleckler, B. D. Santer, J. M. Gregory, and W. M. Washington. 2005. Penetration of Human-Induced Warming into the World's Oceans. Science 309:284-287.
  6. Berven, K. A., D. E. Gill, and S. J. Smith‐Gill. 1979. Countergradient selection in the green frog, Rana clamitans. Evolution 33:609-623.
  7. Castaneda, L. 2004. Adaptive latitudinal shift in the thermal physiology of a terrestrial isopod.
  8. Crick, H. Q. P., C. Dudley, D. E. Glue, and D. L. Thomson. 1997. UK birds are laying eggs earlier. Nature 388:526.
  9. Drent, J. 2002. Temperature responses in larvae of Macoma balthica from a northerly and southerly population of the European distribution range. Journal of Experimental Marine Biology and Ecology 275:117-129.
  10. Fields, P. A. 2001. Review: Protein function at thermal extremes: balancing stability and flexibility. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 129:417-431.
  11. Fitter, A. H., and R. S. R. Fitter. 2002. Rapid Changes in Flowering Time in British Plants. Science 296:1689-1691.
  12. Forseth, T., S. Larsson, A. J. Jensen, B. Jonsson, I. Näslund, and I. Berglund. 2009. Thermal growth performance of juvenile brown trout Salmo trutta: no support for thermal adaptation hypotheses. Journal of Fish Biology 74:133-149.
  13. Huey, R. B., and J. G. Kingsolver. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution 4:131-135.
  14. Karlsson, B., and H. Van Dyck. 2005. Does habitat fragmentation affect temperature-related life-history traits? A laboratory test with a woodland butterfly. Proceedings of the Royal Society of London B: Biological Sciences 272:1257-1263.
  15. Kingsolver, J. G., G. J. Ragland, and J. G. Shlichta. 2004. Quantitative genetics of continuous reaction norms: thermal sensitivity of caterpillar growth rates. Evolution 58:1521-1529.
  16. Merilä, J., A. Laurila, A. T. Laugen, K. Räsänen, and M. Pahkala. 2000. Plasticity in age and size at metamorphosis in Rana temporaria - comparison of high and low latitude populations. Ecography 23:457-465.
  17. Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37.
  18. Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57.
  19. Santer, B. D., M. F. Wehner, T. Wigley, R. Sausen, G. Meehl, K. Taylor, C. Ammann, J. Arblaster, W. Washington, and J. Boyle. 2003. Contributions of anthropogenic and natural forcing to recent tropopause height changes. science 301:479-483.
  20. Scott, M. P., and D. S. J. E. E. Gladstein. 1993. Calculating males? An empirical and theoretical examination of the duration of paternal care in burying beetles. 7:362-378.
  21. Sheldon, K. S., and J. J. Tewksbury. 2014. The impact of seasonality in temperature on thermal tolerance and elevational range size. Ecology 95:2134-2143.
  22. Stevens, G. C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist 133:240-256.
  23. Ståhlberg, F., M. Olsson, and T. Uller. 2001. Population divergence of developmental thermal optima in Swedish common frogs, Rana temporaria. Journal of Evolutionary Biology 14:755-762.
  24. Stott, P. A. 2003. Attribution of regional‐scale temperature changes to anthropogenic and natural causes. Geophysical Research Letters 30.
  25. Sun, H. J., and E. I. Friedmann. 2005. Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models: II. Experimental verification. Microbial ecology 49:528-535.
  26. Sunday, J. M., A. E. Bates, and N. K. Dulvy. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B: Biological Sciences 278:1823-1830.
  27. Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, O. L. Phillips, and S. E. Williams. 2004. Extinction risk from climate change. Nature 427:145.
  28. Wilson, R. S. 2001. Geographic variation in thermal sensitivity of jumping performance in the frog Limnodynastes peronii. Journal of Experimental Biology 204:4227-4236.
  29. 黃文伯. 2007. 環境變遷監測-氣溫對狹溫性甲蟲活動之影響. 林業研究專訊 14:7-10.
  30. 黃文伯, and 葛. J. 環境與生態學報. 2011. 哈盆自然保留區屍食性甲蟲物種生物多樣性監測與氣候變遷之關係. 4:17-34.
  31. 蔡祥瑜. 2017. 尼泊爾埋葬蟲繁殖策略的地區適應演化. 臺灣大學生態學與演化生物學研究所學位論文