Translated Titles

Thermal adaptation in two island populations of burying beetles (Nicrophorus nepalensis Hope 1831)





Key Words

溫度適應 ; 表現曲線 ; 生活使 ; 繁殖 ; 存活 ; thermal adaptation ; performance curve ; life-history ; reproduction ; survival



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract


English Abstract

Climate change has a wide range of influences on organisms. Understanding how organism adapt to thermal variation is critical to forecast the fate of species in the warming world. Most of the previous studies focused on species’ thermal tolerance, but not other important fitness components such as reproduction, varied across different thermal environments. Therefore, how the different fitness components were influenced by climate remains poorly understood. Here, we test two hypotheses about climate adaptation: climate variation hypothesis, and thermal optimum hypothesis, through investigating the thermal tolerance and breeding performance of two populations of burying beetles (Nicrophorus nepalensis Hope 1831) from different latitudes (Amami island: 28°15'12.7"N, and Mt. Hehuan: 24°10'48.2"N). We found that the range of thermal tolerance of the Amami population was broader than that of the Hehuan population, supporting the climate variation hypothesis. However, beetles from the Amami population had better breeding performance than those from the Hehuan population after successfully preparing their breeding resources (i.e. burying carcasses) in every tested temperature. On the other hand, beetles from the Hehuan population had better burying performance than those from Amami population especially in high temperature, and the two populations had no difference in finally fitness at every tested temperature. Our results showed that reproductive performance, which involved in multiple steps such as carcass burial, and larva hatching, is affected by more complicated mechanisms than that of adult physiological tolerance. Our findings also showed the necessity to comprehensively understand the adaptive models of different life history traits.

Topic Category 生命科學院 > 生態學與演化生物學研究所
生物農學 > 生物科學
  1. Addo-Bediako, A., S. L. Chown, and K. J. Gaston. 2000. Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society of London B: Biological Sciences 267:739-745.
  2. Alan Pounds, J., M. R. Bustamante, L. A. Coloma, J. A. Consuegra, M. P. L. Fogden, P. N. Foster, E. La Marca, K. L. Masters, A. Merino-Viteri, R. Puschendorf, S. R. Ron, G. A. Sánchez-Azofeifa, C. J. Still, and B. E. Young. 2006. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161.
  3. Angilletta Jr, M. J., and M. J. Angilletta. 2009. Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press.
  4. Bala, M., and N. Singh. 2017. Geographical distribution of some forensically important species of beetles (Coleoptera: silphidae) from North India (INDIA).
  5. Barnett, T. P., D. W. Pierce, K. M. AchutaRao, P. J. Gleckler, B. D. Santer, J. M. Gregory, and W. M. Washington. 2005. Penetration of Human-Induced Warming into the World's Oceans. Science 309:284-287.
  6. Berven, K. A., D. E. Gill, and S. J. Smith‐Gill. 1979. Countergradient selection in the green frog, Rana clamitans. Evolution 33:609-623.
  7. Castaneda, L. 2004. Adaptive latitudinal shift in the thermal physiology of a terrestrial isopod.
  8. Crick, H. Q. P., C. Dudley, D. E. Glue, and D. L. Thomson. 1997. UK birds are laying eggs earlier. Nature 388:526.
  9. Drent, J. 2002. Temperature responses in larvae of Macoma balthica from a northerly and southerly population of the European distribution range. Journal of Experimental Marine Biology and Ecology 275:117-129.
  10. Fields, P. A. 2001. Review: Protein function at thermal extremes: balancing stability and flexibility. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 129:417-431.
  11. Fitter, A. H., and R. S. R. Fitter. 2002. Rapid Changes in Flowering Time in British Plants. Science 296:1689-1691.
  12. Forseth, T., S. Larsson, A. J. Jensen, B. Jonsson, I. Näslund, and I. Berglund. 2009. Thermal growth performance of juvenile brown trout Salmo trutta: no support for thermal adaptation hypotheses. Journal of Fish Biology 74:133-149.
  13. Huey, R. B., and J. G. Kingsolver. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution 4:131-135.
  14. Karlsson, B., and H. Van Dyck. 2005. Does habitat fragmentation affect temperature-related life-history traits? A laboratory test with a woodland butterfly. Proceedings of the Royal Society of London B: Biological Sciences 272:1257-1263.
  15. Kingsolver, J. G., G. J. Ragland, and J. G. Shlichta. 2004. Quantitative genetics of continuous reaction norms: thermal sensitivity of caterpillar growth rates. Evolution 58:1521-1529.
  16. Merilä, J., A. Laurila, A. T. Laugen, K. Räsänen, and M. Pahkala. 2000. Plasticity in age and size at metamorphosis in Rana temporaria - comparison of high and low latitude populations. Ecography 23:457-465.
  17. Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37.
  18. Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig, and J. A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421:57.
  19. Santer, B. D., M. F. Wehner, T. Wigley, R. Sausen, G. Meehl, K. Taylor, C. Ammann, J. Arblaster, W. Washington, and J. Boyle. 2003. Contributions of anthropogenic and natural forcing to recent tropopause height changes. science 301:479-483.
  20. Scott, M. P., and D. S. J. E. E. Gladstein. 1993. Calculating males? An empirical and theoretical examination of the duration of paternal care in burying beetles. 7:362-378.
  21. Sheldon, K. S., and J. J. Tewksbury. 2014. The impact of seasonality in temperature on thermal tolerance and elevational range size. Ecology 95:2134-2143.
  22. Stevens, G. C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist 133:240-256.
  23. Ståhlberg, F., M. Olsson, and T. Uller. 2001. Population divergence of developmental thermal optima in Swedish common frogs, Rana temporaria. Journal of Evolutionary Biology 14:755-762.
  24. Stott, P. A. 2003. Attribution of regional‐scale temperature changes to anthropogenic and natural causes. Geophysical Research Letters 30.
  25. Sun, H. J., and E. I. Friedmann. 2005. Communities adjust their temperature optima by shifting producer-to-consumer ratio, shown in lichens as models: II. Experimental verification. Microbial ecology 49:528-535.
  26. Sunday, J. M., A. E. Bates, and N. K. Dulvy. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proceedings of the Royal Society of London B: Biological Sciences 278:1823-1830.
  27. Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, O. L. Phillips, and S. E. Williams. 2004. Extinction risk from climate change. Nature 427:145.
  28. Wilson, R. S. 2001. Geographic variation in thermal sensitivity of jumping performance in the frog Limnodynastes peronii. Journal of Experimental Biology 204:4227-4236.
  29. 黃文伯. 2007. 環境變遷監測-氣溫對狹溫性甲蟲活動之影響. 林業研究專訊 14:7-10.
  30. 黃文伯, and 葛. J. 環境與生態學報. 2011. 哈盆自然保留區屍食性甲蟲物種生物多樣性監測與氣候變遷之關係. 4:17-34.
  31. 蔡祥瑜. 2017. 尼泊爾埋葬蟲繁殖策略的地區適應演化. 臺灣大學生態學與演化生物學研究所學位論文