Title

擬靜態結構試驗控制軟體架構

Translated Titles

A Software Framework for Quasi-static Structural Testing

DOI

10.6342/NTU.2011.01916

Authors

王孔君

Key Words

擬靜態試驗 ; 擬動態試驗 ; 結構試驗 ; 物件導向 ; 軟體架構 ; quasi-static test ; pseudo-dynamic test ; structural experiment ; object-oriented ; software framework

PublicationName

臺灣大學土木工程學研究所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

博士

Advisor

蔡克銓

Content Language

英文

Chinese Abstract

過去數十年來,在結構工程研究領域中,研究人員廣泛利用擬靜態試驗法(quasi-static structural testing)對結構構件及結構系統進行各種測試,以求能更深入了解待測試體之力學行為。相對於其他結構試驗法,擬靜態試驗法之所以在結構實驗室中被廣泛運用,其原因主要包括下列二者:(1)以本試驗法進行結構試驗,所需之硬體設備相對來說較為經濟。(2)本試驗法能提供研究人員高度彈性。舉凡試體結構大小與幾何、試驗流程安排等諸項直接影響試驗設置之因素,相較於其他試驗法,在擬靜態試驗法中,較容易透過修改控制軟體、搭配使用不同硬體等方式達成試驗目的。然而,在此陳述的擬靜態試驗法所能提供的高度彈性卻並不常見於傳統結構試驗室中,主要的原因是由於截至目前為止,在控制軟體建構上,欠缺了一個有彈性、容易擴充且已解決多數擬靜態試驗法中所面臨問題的軟體架構(software framework)。 本研究嘗試建立此一軟體架構,期望此軟體架構能解決大部份於進行擬靜態試驗時所會遭遇到的問題。因而在需要建立一個新的結構實驗室控制軟體以進行擬靜態試驗時,能直接使用此軟體架構所提供之功能,進而容易地達成實驗目的之要求。 為能建立此一軟體架構,本研究首先審視了目前在結構實驗室中,已經實作出之擬靜態試驗之特性。同時列出了一個理想中的擬靜態試驗法所能提供的功能。本研究接著進行了物件導向分析、設計與實作。透過物件導向分析,找出了執行擬動態試驗法時若干重要概念,並將之抽象化為底層基礎類別。另外,亦探討了這些基礎抽象類別彼此間之互動模式,並由探討結果進行物件導向設計與實作,最後提出一軟體架構。 本研究利用提出之軟體架構,以C++程式語言建立了一實驗控制軟體。此實驗控制軟體大量利用本研究所提出之軟體架構,並建立幾個客製化之類別,以能控制國家地震工程研究中心反力牆與強力地板結構實驗室中所使用之硬體設備。 本研究利用上述實驗控制軟體,在實驗室中實際以之控制實驗設備,進行了兩個系列的擬靜態試驗,包括反覆載重試驗,與雙向擬動態試驗。試驗皆已順利完成,證明了本研究所提出之軟體架構之有效性。

English Abstract

The quasi-static structural testing method has been widely employed in structural laboratories by researchers to explore the mechanical behaviors of structural components and systems for several decades. This is mainly due to cost-efficiency of the required apparatus and the flexibility that can be provided by the testing method. However, in general the flexibility that can be potentially drawn out from the testing method are not fully implemented in laboratories mainly due to the fact of lackness of a flexible and extensible software architecture of the control applications used to conduct quasi-static structural tests. Laboratory technicians typically need to modify existing control programs to meet the ever-changing requirements for different quasi-static structural tests. The feature of cost-efficiency in fact adds difficulty in this situation since it is usually required to modify the existing control applications to incorporate the newly purchased equipments in the original testing environment and the coding efforts needed in such incorporation typically is not easy. The objective of the research described in this dissertation is to develop a object-oriented software framework that can be used to build software applications to conduct quasi-static structural tests in structural laboratories. The software framework is expected to be able to solve most of the frequently encountered problems in implementing quasi-static structural tests. To this end, the characteristics of quasi-static structural testing were reviewed and the desired features of this testing method were listed. Object-oriented analysis was performed and based the analysis results key abstractions were identified. Based on the results drawn from the object-oriented analysis, object-oriented design was also perfomed. In the process of object-oriented dsign, key scenarios that are frequently encountered were reviewed and the interaction between those key abstractions was identified. Finally based on the results obtained from the object-oriented design, the software framework was built by object-oriented programming. An example software program was built using the proposed software framework. This application extends the proposed software framework and constructs a number of C++ classes that work with the hardware equipments utilized in the National Center for Research on Earthquake Engineering, Taiwan. Two series of quasi-static structural tests, one series of cyclic tests and another series of pseudo-dynamic tests, were conducted using the said control application. The proposed software framework is validated by the success of these two series of tests.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
Reference
  1. 2. Bonnet P. A., Williams M. S., and Blakeborough A., 2008, "Evaluation of Numerical Time-integration Schemes for Real-time Hybrid Testing," Earthquake Engineering and Structural Dynamics 2008; 37:1467–1490.
    連結:
  2. 3. Booch G., Maksimchuk R., Engle M., Young B., Conallen J., Houston K., 2007, “Object-oriented analysis and design with applications, 3rd Edition,” Addison-Wesley Professional.
    連結:
  3. 5. Cook R. D., Malkus D. S., and Plesha M. E, 1989, “Concepts and Applications of Finite Element Analysis, 3rd Edition” Jhon Wiley & Sons, Inc.
    連結:
  4. 10. Hung, H. H., Liu, K. Y. and Ho, T. H., and Chang, K.C., 2011, “An Experimental Study on the Rocking Response of Bridge Piers with Spread Footing Foundations,” Earthquake Engineering and Structural Dynamics, 40(7), 749-769.
    連結:
  5. 13. Jon P. 1981a, “Transmission Control Protocol – DARPA Internet Program Protocol Specification,”, RFC-793, DARPA.
    連結:
  6. 14. Jon P. 1981b, “Internet Protocol – DARPA Internet Program Protocol Specification,”, RFC-791, DARPA.
    連結:
  7. 15. Jung R.-Y., Shing P. B., Stauffer E., and Thoen B., 2007, "Performance of a Real-time Pseudodynamic Test System Considering Nonlinear Structural Response," Earthquake Engineering and Structural Dynamics 2007; 36:1785-1809.
    連結:
  8. 19. Kwon O.-S., and Nakata N., 2005, "A Framework for Multi-site Distributed Simulation and Application to Complex Structural Systems," Journal of Earthquake Engineering, Vol. 9, No 5 (2005) 741-753.
    連結:
  9. 20. Lamarche C.-P., Tremblay R., Leger P., Leclerc M., and Bursi O. S., 2010, "Comparison between Real-time Dynamic Substructuring and Shake Table Testing Techniques for Nonlinear Seismic Applications," Earthquake Engineering and Structural Dynamics 2010; 39:1299-1320.
    連結:
  10. 22. Leon R. T. and Deierlein G. G., 1996, “Considerations for the Use of Quasi-Static Testing,” Earthquake Spectra, Volume 12, No. 1.
    連結:
  11. 23. Li C. H., and Tsai K. C., 2010, “Cyclic Tests of Four Two-Story Narrow Steel Plate Shear Walls. Part 2: Experimental Results and Design Implications”, Earthquake Engineering and Structural Dynamics 39(7):801-826.
    連結:
  12. 24. Lin C. H., Tsai K. C., Qu B., and Bruneau M., 2010, “Sub-structure Psudo-dynamic Performance of Two Full-scale Two-story Steel Plate Shear Walls,” Journal of Constructional Steel Research, 66(2010), 1467-1482.
    連結:
  13. 25. Lin M. L., Tsai K. C., and Tsai C. Y., 2006, “Bi-directional Sub-structural Pseudo-dynamic Testing of a Full-scale 2-story BRBF, Part 2: Compressive Behavior of Gusset Connections,” Proceedings, 8th National Conference on Earthquake Engineering, San Francisco, April 2006.
    連結:
  14. 26. Lin P. C., Tsai K. C., Wang K. J., Yu Y. J., Wei C. Y., Wu A. C., Tsai C. Y., Chen J. C., Schellenberg, A., Mahin, S. A., Charles, C. W. 2011, “Seismic Design and Hybrid Tests of A Full-scale 3-story Buckling-Restrained Braced Frame Using Welded End Connections and Thin Profile,” Earthquake Engineering and Structural Dynamics (accepted).
    連結:
  15. 27. Mahin S. A., Shing P. B., Thewalt C. R., and Hanson R.D., 1989, “Pseudodynamic Test Method – Current Status and Future Directions,” Journal of Structural Engineering, Vol. 115, 2113-2128.
    連結:
  16. 30. MTS System Corporation, 2007, “C++ Programming Libraries Model 793.00 Software.”
    連結:
  17. 35. Nakashima M, Akazawa T., and Igarashi H, 1995, “Pseudo-dynamic Testing Using Conventional Testing Devices,” Earthquake Engineering and Structural Dynamics. Vol 24, 1409-1422.
    連結:
  18. 38. NEEShub—George E. Brown Jr. Network for earthquake engineering simulation. http://www.nees.org (5 August 2011).
    連結:
  19. 43. Pan P., Tada M, and Nakashima M., 2005, “Online hybrid test by Internet linkage of distributed test-analysis domains,” Earthquake Engineering and Structural Dynamics 2005; 34:1407–1425.
    連結:
  20. 44. Park D. U., Yun C. B., Lee J. W., Nagata K., Watanabe E., and Sugiura K., 2004, “On-line pseudo-dynamic network testing on base-isolated bridges using Internet and wireless Internet,” Experimental Mechanics 2004; 45:331–343. 10.1007/BF02428163
    連結:
  21. 45. Pinto A. V., Pegon P., Magonette G., and Tsionis G. 2004, “Pseudo-dynamic testing of bridges using non-linear substructuring,” Earthquake Engineering and Structural Dynamics 2004; 33:1125–1146.
    連結:
  22. 47. Qu B., Bruneau M., Lin C. H., and Tsai K. C., 2008, “Testing of Full Scale Two-Story Steel Plate Shear Wall with Reduced Beam Sections Connections and Composite Floors”, Journal of Structural Engineering 134(3): 364-373.
    連結:
  23. 50. Roeder C. W., Lehman D. E., Clark K., Powell J., Yoo J.H., Tsai K. C., Lin C. H., and Wei C. Y., 2010, “Influence of Gusset Plate Connection and Braces on the Seismic Performance of X-Braced Frames,” Earthquake Engineering and Structural Dynamics.
    連結:
  24. 55. Takahashi Y., and Fenves G. L., 2006, “Software Framework for Distributed Experimental-Computational Simulation of Structural Systems,” Earthquake Engineering and Structual Dynamics 2006; 35:267-291.
    連結:
  25. 56. Takanashi K., and Nakashima M., 1987, “Japanese activities on on-line testing,” Journal of Engineering of Mechanics. Vol. 113, 1014-1032.
    連結:
  26. 57. Tokyo Sokki Kenkyujo Co., Ltd. “ High Speed Data Acquisition System THS-1000 SHW-50A Operation Manual.”
    連結:
  27. 58. Tsai K. C., Weng Y. T., Wang K. J., Tsai C. Y., and Lai J. W., 2006, “Bi-directional Sub-structural Pseudo-dynamic Testing of a Full-scale 2-story BRBF, Part 1: Seismic Design, Analytical and Experimental Performance Assessments”, Proceedings, Proceedings, 8th National Conference on Earthquake Engineering, San Francisco, April 2006
    連結:
  28. 59. Tsai K. C., Hsiao P. C., Weng Y. T., Lin M. L., Lin K. C., Chen C. H., Lai, J. W., and Lin S. L., 2008a, “Pseudo-dynamic Tests of a Full-scale CFT/BRB Frame. Part 1: Specimen Design, Experiment and Analysis,” Earthquake Engineerning and Structural Dynamics 37:1081–1098.
    連結:
  29. 60. Tsai K.C., Hsiao P.C., Wang K.J., Weng Y.T., Lin M.L., Lin K.C., Chen C.H., Lai J.W., and Lin S.L., 2008b, “Pseudo-dynamic tests of a full-scale CFT/BRB frame - Part I: Specimen design, experiment and analysis,” Earthquake Engineering and Structural Dynamics; 37:1081-1098.
    連結:
  30. 61. Tsai K. C., and Li C. H., 2010, “Cyclic Tests of Four Two-Story Narrow Steel Plate Shear Walls. Part 1: Analytical Studies and Specimen Design,” Earthquake Engineering and Structural Dynamics 39(7): 775-799.
    連結:
  31. 62. Tsai K. C., and Hsiao P. C., 2008b, “Pseudo-dynamic Tests of a Full-scale CFT/BRB Frame. Part 2: Seismic Performance of Buckling Restrained Braces and Connections,” Earthquake Engineering and Structural Dynamics 37:1099–1115.
    連結:
  32. 64. Tsai C. Y, Tsai K. C., Lin C. H., Wei C. Y., Wang K. J., Yu Y. J., and Wu A. C., 2011b, “Cyclic Responses of Three 2-story Seismic Concentrically Braced Frames,” Journal of Frontiers of Architecture and Civil Engineering. (in press)
    連結:
  33. 65. Wang K. J., Wang S. J., Cheng W. C., Yang Y. S., and Tsai K. C., 2007, “ISEE: Internet-Based Simulation for Earthquake Engineering Part II: The Application Protocol Approach,” Earthquake Engineering and Structural Dynamics, 36, 2307-2323.
    連結:
  34. 66. Wang T., Nakashima M., and Pan P., 2006, “Online Hybrid Test Combined with General-Purpose Finite Element Software,” Earthquake Engineering and Structural Dynamics 2006; 35:1471–1488.
    連結:
  35. 67. Yang Y. S., Hsieh S. H., Tsai K. C., Wang S. J., Wang K. J., Cheng W. C., and Hsu C. W., 2007, “ISEE: Internet-Based Simulation for Earthquake Engineering Part I: Database Approach,”
    連結:
  36. 68. Yang, Y. S., Chang, Y. Y., Wang, S. J., Wang, K. J., Weng, Y. T., Lin, M. L., Cheng, W. C., Tsai, K. C., Lau, D. and Hsieh, S. H., 2006a, “A Remote Collaborative Seismic Design and Simulation on Large-scale DSCFT Piers,” Journal of Hunan University, Vol.33, No. 3, pp.40-46.
    連結:
  37. 69. Yang, Y. S., Tsai, K. C., Wang, K. J., Wang, S. J., Lin, M. L., Weng, Y. T., Chen, P. C., Cheng, W. C., Chuang, M. C., Lin, B. Z., Lau, D. T. and Chang, Y. Y., 2006b, "Application of an Internet-based Experimental Platform on a Transnational Pseudo-dynamic DSCFT-Bridge Experiment," Proceedings of the 8th National Conference on Structure Engineering (8NCSE Taiwan), Paper No. L-15, Sun Moon Lake, Taiwan, September 1-3, 2006.
    連結:
  38. 1. 王孔君,汪向榮,楊元森,鄭維中,翁元滔,林敏郎,蔡克銓。「網絡協同擬動力試驗」。湖南大學學報(EI)。第三十三卷,第三期。18-26頁。2006年6月。
  39. 4. Canadian Seismic Research Network, Canada. http://csrn.mcgill.ca/main.html (4 August 2011)
  40. 6. Fowler M., 2003, “UML Distrilled:A Brief Guide to the Standard Object Modeling Language, 3rd Edition,” Addison-Wesley.
  41. 7. Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M., 1994, “Design Patterns: Elements of Reus-able Object-oriented Software,” Addison-Wesley Professional.
  42. 8. Guo Y. R., Xiao Y., Fan Y. L., Dong X. H., and Hu Q. 2006, “Development and application of a collaborative hybrid dynamic testing software based on NetSLab,” Eighth US National Conference on Earthquake Engineering, San Francisco, CA, U.S.A., 2006; Paper No. 1198.
  43. 9. Horowitz E., Sahni S., Mehta D., 1995, “Fundamentals of Data Structure in C++,” Computer Science Press An Imprint of W. H. Freeman and Company New York.
  44. 11. Hwang S. J., Chiou T. C., and Weng Y. T., 2007, “Experimental and Analytical Performance Assessment of In-Situ Pushover Tests of Reui-Pu Elementary School Building in Taiwan,” APRU/AEARU’s 3rd Research Symposium, June 21-22, Jakarta, Indonesia.
  45. 12. Hyogo Earthquake Engineering Research Center http://www.bosai.go.jp/hyogo/ehyogo/index.html (5 August 2011).
  46. 16. Kernighan B. W., and Ritchie D. M., 1988, “The C Programming Language, 2nd Edition,” Prentice Hall PTR, Englewood Cliffs, New Jersey 07632.
  47. 17. Korea Construction Engineering Development Program, Korea. http://www.koced.net/ENG/ (10 August 2011).
  48. 18. Kurose J. F., and Ross K. W., 2004, “Computer Networking: A Top-Down Approach Featuring the Internet, 3rd Edition,” Addison-Wesley.
  49. 21. Lee H. C., 2011, “A study of seismic design for vertical boundary elements in steel plate shear walls,” Master thesis, Division of Structural Engineering, Department of Civil Engi-neering, National Taiwan University.
  50. 28. Meyers S., 2005, “Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd Edition,” Addison-Wesley Professional.
  51. 29. Mosquida G, Stojadinovic B, and Mahin S. A., 2005, “Implementation and Accuracy of Continuous Hybrid Simulation with Geographically Distributed Structrures,” Earthquake Engineering Research Center report, University of California, Berkeley. Report No: EERC 2005-02.
  52. 31. MTS System Corporation 2008a, “793 Controller Overview.”
  53. 32. MTS System Corporation, 2008b, “793 Control Software.”
  54. 33. MTS System Corporation, 2008c, “793 Utility Software.”
  55. 34. MTS System Corporation, 2008d, “MultiPurpose Testware Application Software.”
  56. 36. National Research Institute for Earth Science and Disaster Prevention. http://www.bosai.go.jp/e/index.html (5 August 2011).
  57. 37. NEESgrid Mini-MOST. http://neesgrid.ncsa.uiuc.edu/mini-most/ (24 January 2007).
  58. 39. NZ Network for Earthquake Engineering Simulation, New Zealand. http://www.nznees.auckland.ac.nz/ (5 August 2011).
  59. 40. Ohtani K., Ogawa N., Katayama T., and Shibata H., 2003a, “3-D full-scale earthquake testing facility and earthquake engineering network,” Proceedings of the 3rd World Conference on Structural Control, Como, Italy, 2003b; 1019–1024.
  60. 41. Ohtani K., Ogawa N., Katayama T., and Shibata H. 2003, “Project E-Defense 3-D full-scale earthquake testing facility,” Proceedings of the Joint NCREE/JRC Workshop International Collaboration on Earthquake Disaster Mitigation Research, National Center for Research on Earthquake Engineering, Taipei, Taiwan, 2003; 223–234.
  61. 42. Ojaghi M., 2011, “Development of the UK-NEES test Middleware, Early Tests, Web Services Approach, Network Usage, Security, and Usibility Issues in Distributed Hybrid Testing,” OUEL Departmental Report no 2322/11, University of Oxford, Department of Engineering Science. http://www.eng.ox.ac.uk/civil/publications/reports-1/ouel_2322_11.pdf (6 August 2011)
  62. 46. Politopoulos I., Marazzi F., and Pavese A., 2011, “Towards a New High Performance Seismic Testing Facility in Europe,” Proceedings of the 4th International Conference on Advances in Experimental Structural Engineering (4AESE), Ispra, Italy, June 28-29, 2011.
  63. 48. Quinn B., and Shute D., 1996, “Windows Sockets Network Programming,” Addison-Wesley.
  64. 49. Rinawi, Abdulkarim M., and Clough, Ray W., 1991, “Shaking table-structure interaction,” Earthquake Engineering Research Center, University of California, Berkeley, 1991-10.
  65. 51. Schellenberg A. H., 2008, “Advanced Implementation of Hybrid Simulation,” Doctoral thesis, Civil and Environmental Engineering, University of California, Berkeley.
  66. 52. Shing P. B., and Mahin S. A., 1983, “Experimental Error Propagation in Pseudodynamic Testing,” Earthquake Engineering Research Center report, University of California, Berkeley. Report No: EERC 1983-12.
  67. 53. Spencer B. F., Elnashai A., Nakata N., Saliem H., Yang G., Futrelle J., Glick W., Marcusiu D., Ricker K., Finholt T., Horn D., Hubbard P., Keahey K., Liming L., Zaluzec, Pearlman L., and Stauffer E., 2004, “The MOST experiment: earthquake engineering on the grid,” Technical Report NEESgrid-2004-41, NEES Program, National Science Foundation, U.S.A., 2004.
  68. 54. Sugiura K., Nagata N., Suzuka Y., and Watanabe E., 1998, “Internet related structural testing,” 8th KKNN Seminar on Civil Engineering, National University of Singapore, Singapore, 1998; 219–224.
  69. 63. Tsai, C.Y, Tsai, K.C., Lin, C.H. Wei, C.Y., Wang, K.J. Yu, Y.J. and Wu A.C., 2011a, “Cyclic Responses of Three 2-story Seismic Concentrically Braced Frames,” Frontiers of Architecture and Civil Engineering in China, 4, (3).
  70. 70. Zhang M., 1997, “Study on Similitude Laws for Shaking Table Tests,” Journal of Earthquake Engineering and Engineering Vibration, 1997-02.
  71. 71. Zhu P. S., Xiao Y., Martin G., and Guo Y.R., 2006, “Networked pseudo-dynamic testing of bridge pier and pile foundation. Eighth US National Conference on Earthquake Engineering, San Francisco, CA, U.S.A., 2006; Paper No. 1149.
Times Cited
  1. 何姿慧(2009)。橋梁基礎搖擺機制之初步研究。臺灣大學土木工程學研究所學位論文。2009。1-134。 
  2. 陳威逸(2007)。含功能性支承縮尺橋梁之試驗與分析。臺灣大學土木工程學研究所學位論文。2007。1-160。 
  3. 游宜哲(2006)。物件導向非線性靜動態三維結構分析程式之擴充。臺灣大學土木工程學研究所學位論文。2006。1-111。 
  4. 陳愷澤(2004)。鋼筋混凝土結構物加裝消能器補強之位移設計法。臺灣大學土木工程學研究所學位論文。2004。1-163。 
  5. 吳秉憲(2004)。橋梁功能性支承系統參數之研究–橡膠支承墊力學行為與摩擦係數之測定。臺灣大學土木工程學研究所學位論文。2004。1-165。 
  6. 李明鴻(2006)。應用快速擬動態試驗技術於線性 含斜撐框架動態反應之模擬與試驗。成功大學土木工程學系學位論文。2006。1-179。