Translated Titles

The Development of Corrosion Monitoring Technique on the Coating of Offshore Wind Turbines





Key Words

腐蝕監測 ; 電化學 ; 交流阻抗 ; Corrosion Monitor ; CHM ; Electrochemistry ; EIS



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

台灣因地處高溫高濕及高鹽份的環境中,腐蝕情況甚為普遍。為了抵抗金屬材料因腐蝕造成的破壞,施予金屬表面一層保護塗層為不可或缺的一環。然而塗層在腐蝕環境中同樣會遇到劣化的情形,因此如何即時偵測塗層破壞的情形也是值得重視的問題,特別是離岸型無人設施的遠端腐蝕監測技術的建立。本研究第一部分將使用ElectraWatch Coating Health Monitor(CHM)腐蝕監測儀器進行研究,並且比對利用恆電位儀所測得的交流阻抗數據,確認CHM監測腐蝕的準確性、缺陷產生之靈敏度量測、阻抗量測極限值與遠端傳輸之功能。第二部分針對CHM量測之極限結果進行改良,設計電路系統解決CHM於低頻高阻抗之量測極限,並針對電路系統量測交流阻抗之準確性、極限值量測、與腐蝕監控進行實驗。 第一部分的實驗結果發現CHM在量測交流阻抗108歐姆以下之防蝕塗層數據上與恆電位儀之數據具有一致性,但是針對塗層輕微毀損所對應之交流阻抗下降行為並無法快速測得。另一方面,在商用塗層測試實驗中發現,當防蝕塗層之交流阻抗值超過儀器量測上限108歐姆後,CHM儀器無法量測商用塗層之交流阻抗數據。且其塗層量測範圍距離電極輔助膠帶僅30毫米。遠端傳輸部分測試結果為20公尺。 第二部分的實驗結果顯示電路系統在量測防蝕塗層之交流阻抗數據之精準度上可比擬恆電位儀,且商用塗層之交流阻抗量測極限值可至1010歐姆,此部分之結果優於CHM之量測極限。在腐蝕監測實驗結果顯示電路系統可精確的量測出塗層因毀損而導致的交流阻抗值改變,精準度可比擬恆電位儀。 電路系統初步測試可解決CHM應用於離岸風機防蝕塗層監控技術上之量測極限。未來將針對簡化裝置與架設部分進行開發並優化遠端傳輸功能。

English Abstract

Corrosion is always accompanied by disaster in Taiwan because of the high temperature, high humidity, and high salinity environment. To protect metal from corroding in this severe environment, paint coatings are commonly applied on the surface of metal to enhance its corrosion resistance. In order to monitor the health and effectiveness of the coating in the corrosive environment, ElectraWatch Coating Health Monitor (CHM) is employed in the investigation of the corrosion characteristics of coating in this paper. First of all, we compare the data between CHM and Potentiostat Gamry Ref600 to confirm the accuracy of CHM. Then, we test the sensitivity, the limit of impedance at low frequency, and remote transmission ability about CHM. Finally, we focus on the limit of impedance at low frequency and remote transmission ability to make improvements. We design a circuit board to increase the measurement range of impedance. Then, we design the experiment to test the ability of Circuit Test System about its accuracy, limit of measurement, and corrosion monitoring. From the first part of experiment, we discover the accuracy of CHM is consistency with Potentiostat, but CHM has poor ability to test the change of the impedance when the coating is little defect. Moreover, in the test of commercial coating, CHM can’t measure the impedance of the coating because the impedance exceed 108 ohms, the limit of CHM. We also test the measurement range about CHM, and we find its measurement range is apart from electrode type only 30 millimeters. Finally, we test about the remote transmission distance of CHM, and we find that the remote transmission distance of CHM is about 20 meters From the second part of experiment, we discover the accuracy of Circuit Test System is also consistency with Potentiostat. In addition, the measurement limit on testing the impedance of the Circuit Test System is higher than 1010 ohms. Finally, from the experiment of the corrosion monitoring test, we find Circuit Test System can accurately test the change of impedance when the coating begin to emerge defect. We can use Circuit Test System to solve the problem of CHM about testing limit when we need to monitor the corrosion of the coating of offshore turbines. In the future, we will develop the equipment and improve the ability of the remote transmission distance.

Topic Category 基礎與應用科學 > 海洋科學
工學院 > 工程科學及海洋工程學研究所
工程學 > 工程學總論
  1. 2. T. Liu, P. Tavner, Y. Feng, and Y. Qiu, "Review of recent offshore wind power developments in china," Wind energy, vol. 16, pp. 786-803, 2013.
  2. 5. 杜柄龍, "風力發電工程執行之關鍵影響因素探討," 臺灣大學土木工程學研究所學位論文, pp. 1-99, 2010.
  3. 6. 吳柏均, "流致共振分析方法與風機葉片實例應用," 臺灣大學工程科學及海洋工程學研究所學位論文, pp. 1-122, 2015.
  4. 10. W. R. Hendricks, "The Aloha Airlines accident—a new era for aging aircraft," in Structural integrity of aging airplanes, ed: Springer, 1991, pp. 153-165.
  5. 14. 許登貴, "管線上均勻腐蝕對導波檢測之影響," 中山大學機械與機電工程學系研究所學位論文, pp. 1-150, 2014.
  6. 16. J. Gonzalez, C. Andrade, C. Alonso, and S. Feliu, "Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement," Cement and Concrete Research, vol. 25, pp. 257-264, 1995.
  7. 19. "Pitting corrosion ".
  8. 20. J. Oldfield and W. Sutton, "Crevice corrosion of stainless steels: i. a mathematical model," British corrosion journal, vol. 13, pp. 13-22, 1978.
  9. 21. "Crevice corrosion."
  10. 22. M. Shimada, H. Kokawa, Z. Wang, Y. Sato, and I. Karibe, "Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering," Acta Materialia, vol. 50, pp. 2331-2341, 2002.
  11. 23. "Intergranular corrosion."
  12. 25. 李瀅, "SAE 8620 合金鋼應力腐蝕特性之研究," 臺灣大學材料科學與工程學研究所學位論文, pp. 1-65, 2007.
  13. 26. G. E. Dieter and D. J. Bacon, Mechanical metallurgy vol. 3: McGraw-Hill New York, 1986.
  14. 27. M. Tavakkolizadeh and H. Saadatmanesh, "Galvanic corrosion of carbon and steel in aggressive environments," Journal of Composites for Construction, vol. 5, pp. 200-210, 2001.
  15. 33. E. McCafferty, Introduction to corrosion science: Springer Science & Business Media, 2010.
  16. 34. M. Stern and A. L. Geary, "Electrochemical polarization I. A theoretical analysis of the shape of polarization curves," Journal of the electrochemical society, vol. 104, pp. 56-63, 1957.
  17. 35. H. W. Pickering, "Characteristic features of alloy polarization curves," Corrosion Science, vol. 23, pp. 1107-1120, 1983.
  18. 36. K. Osozawa and H.-J. Engell, "The anodic polarization curves of iron-nickel-chromium alloys," Corrosion Science, vol. 6, pp. 389-393, 1966.
  19. 40. A. Amirudin and D. Thieny, "Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals," Progress in organic coatings, vol. 26, pp. 1-28, 1995.
  20. 41. C. G. Munger and L. D. Vincent, "Corrosion prevention by protective coatings," 1999.
  21. 44. D. Prediger and D. Ghosh, "Anode oxidation protection in a high-temperature fuel cell," ed: Google Patents, 2001.
  22. 46. S. Szabó and I. Bakos, "Impressed current cathodic protection," Corrosion Reviews, vol. 24, pp. 39-62, 2006.
  23. 49. B. Thierry, M. Tabrizian, C. Trepanier, O. Savadogo, and L. H. Yahia, "Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy," Journal of biomedical materials research, vol. 51, pp. 685-693, 2000.
  24. 50. L. Pawlowski, The science and engineering of thermal spray coatings: John Wiley & Sons, 2008.
  25. 51. J. Culcasi, P. Sere, C. Elsner, and A. Di Sarli, "Control of the growth of zinc–iron phases in the hot-dip galvanizing process," Surface and Coatings Technology, vol. 122, pp. 21-23, 1999.
  26. 52. T. Ikeda and H. Satoh, "Phase formation and characterization of hard coatings in the Ti Al N system prepared by the cathodic arc ion plating method," Thin Solid Films, vol. 195, pp. 99-110, 1991.
  27. 53. G. O. Mallory and J. B. Hajdu, Electroless plating: fundamentals and applications: William Andrew, 1990.
  28. 54. D. W. Brenner, "Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films," Physical Review B, vol. 42, p. 9458, 1990.
  29. 57. L. Shi, C. Sun, P. Gao, F. Zhou, and W. Liu, "Mechanical properties and wear and corrosion resistance of electrodeposited Ni–Co/SiC nanocomposite coating," Applied Surface Science, vol. 252, pp. 3591-3599, 2006.
  30. 59. P. R. Roberge, Corrosion inspection and monitoring vol. 2: John Wiley & Sons, 2007.
  31. 60. H. Man, H. Man, and L. Leung, "Corrosion protection of NdFeB magnets by surface coatings-Part I: Salt spray test," Journal of magnetism and magnetic materials, vol. 152, pp. 40-46, 1996.
  32. 61. J. Wilson and M. Sykes, "Is zonation on coastal sand dunes determined primarily by sand burial or by salt spray? A test in New Zealand dunes," Ecology letters, vol. 2, pp. 233-236, 1999.
  33. 62. S. S. Pathak, M. D. Blanton, S. K. Mendon, and J. W. Rawlins, "Investigation on dual corrosion performance of magnesium-rich primer for aluminum alloys under salt spray test (ASTM B117) and natural exposure," Corrosion Science, vol. 52, pp. 1453-1463, 2010.
  34. 63. "Salt spray test."
  35. 65. W. S. Tait, An introduction to electrochemical corrosion testing for practicing engineers and scientists: PairODocs Publications, 1994.
  36. 66. B. Conway, L. Bai, and D. Tessier, "Data collection and processing of open-circuit potential-decay measurements using a digital oscilloscope: derivation of the H-capacitance behaviour of H2-evolving, Ni-based cathodes," Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 161, pp. 39-49, 1984.
  37. 67. U. R. Evans, An introduction to metallic corrosion: Edward Arnold Ltd., 1981.
  38. 68. P. Bonora, F. Deflorian, and L. Fedrizzi, "Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion," Electrochimica Acta, vol. 41, pp. 1073-1082, 1996.
  39. 72. G. B. Clayton and S. Winder, Operational amplifiers: Newnes, 2003.
  40. 74. A. Yariv, "Introduction to optical electronics," 1976.
  41. 75. G. Bierwagen, D. Tallman, J. Li, L. He, and C. Jeffcoate, "EIS studies of coated metals in accelerated exposure," Progress in Organic Coatings, vol. 46, pp. 149-158, 2003.
  42. 76. F. Mansfeld, "Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings," Journal of Applied Electrochemistry, vol. 25, pp. 187-202, 1995.
  43. 77. J. Campbell, "RF signal generator," ed: Google Patents, 1977.
  44. 1. G. H. Koch, P. Michiel, Y. P. Virmani, and J. Payer, "Cost of Corrosion Study Unveiled."
  45. 3. E. ISO, "12944-2," Paints and varnishes—Corrosion protection of steel structures by protective paint systems—Part 2: Classification of environments (ISO 12944, vol. 2, 1998.
  46. 4. G. D. Davis, R. C. Dunn, and R. A. Ross, "Wireless, Battery-Powered Coating Health Monitor(CHM)," ed: National Association of Corrosion Engineers, P. O. Box 218340 Houston TX 77084 USA, 2010.
  47. 7. G. H. Koch, M. P. Brongers, N. G. Thompson, Y. P. Virmani, and J. H. Payer, "Corrosion cost and preventive strategies in the United States," 2002.
  48. 8. A. Astaneh-Asl, "Progressive collapse of steel truss bridges, the case of I-35W collapse," in Proceedings of 7th International Conference on Steel Bridges, Guimarăes, Portugal, 2008.
  49. 9. "I-35W bridge."
  50. 11. "The nine most heroic airline pilots of all time."
  51. 12. 金磊, "韩国 “三丰” 大厦倒塌后的技术与管理思考," 国外建筑科学, vol. 13, pp. 49-51, 1995.
  52. 13. "Superstore Collapse ".
  53. 15. "氣爆油管."
  54. 17. "Uniform (or general) corrosion."
  55. 18. Z. Szklarska-Smialowska, Pitting corrosion of metals: National Association of Corrosion Engineers, 1986.
  56. 24. K. Sieradzki and R. Newman, "Stress-corrosion cracking," Journal of physics and chemistry of solids, vol. 48, pp. 1101-1113, 1987.
  57. 28. "Galvanic corrosion."
  58. 29. A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications vol. 2: Wiley New York, 1980.
  59. 30. R. W. Revie, Corrosion and corrosion control: John Wiley & Sons, 2008.
  60. 31. M. G. Fontana, Corrosion engineering: Tata McGraw-Hill Education, 2005.
  61. 32. E. Hollingsworth and H. Hunsicker, "Corrosion of aluminum and aluminum alloys," ASM Handbook., vol. 13, pp. 583-609, 1987.
  62. 37. M. E. Orazem and B. Tribollet, Electrochemical impedance spectroscopy vol. 48: John Wiley & Sons, 2011.
  63. 38. B.-Y. Chang and S.-M. Park, "Electrochemical impedance spectroscopy," Annual Review of Analytical Chemistry, vol. 3, pp. 207-229, 2010.
  64. 39. E. Ivers‐Tiffée, A. Weber, and H. Schichlein, "Electrochemical impedance spectroscopy," Handbook of fuel cells, 2003.
  65. 42. G. Wranglén, "An introduction to corrosion and protection of metals," 1985.
  66. 43. E. Ghali, V. S. Sastri, and M. Elboujdaini, Corrosion prevention and protection: practical solutions: John Wiley & Sons, 2007.
  67. 45. "電化學陰極保護法."
  68. 47. A. W. Peabody and R. Bianchetti, Control of pipeline corrosion: National Association of Corrosion Engineers, 1967.
  69. 48. "電化學陰極保護法特色表."
  70. 55. Z. W. Wicks Jr, F. N. Jones, S. P. Pappas, and D. A. Wicks, Organic coatings: science and technology: John Wiley & Sons, 2007.
  71. 56. P. M. Ajayan, L. S. Schadler, and P. V. Braun, Nanocomposite science and technology: John Wiley & Sons, 2006.
  72. 58. 黃鈺琳, "銅, 鋅, 鋁在含硫環境中大氣腐蝕行為相關研究," 2012.
  73. 64. A. D610-08, "Standard Practice for Evaluating Degree of Rusting on Painted Steel Surfaces," 2008.
  74. 69. G. D. Davis, R. A. Ross, and S. Raghu, "Coating Health Monitoring System for Army Ground Vehicles," Corrosion2007, Paper, vol. 7230, pp. 11-28, 2007.
  75. 70. P. D. Ryan Dunn & Guy Davis, "Monitoring Coating Degradation with a Wireless, Battery-Powered Coating Health Monitor (CHM)," pp. 12-20, 2010/07/07.
  76. 71. "Gamry Instruments Reference 600 Plus."
  77. 73. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and waves in communication electronics: John Wiley & Sons, 2008.
Times Cited
  1. 顧寶而(2017)。多壁奈米碳管對於聚氨酯塗層之抗蝕及水下吸音特性影響之研究。臺灣大學工程科學及海洋工程學研究所學位論文。2017。1-111。