Translated Titles

Incorporating the particle memory effect under the impact of turbulence structures into suspended sediment transport analysis: Toward a novel random walk model





Key Words

懸浮載運輸 ; 紊流擴散 ; 隨機漫步理論 ; 記憶效應 ; 紊流的時間尺度 ; suspended sediment transport ; turbulent diffusion ; random walk theory ; memory effect ; temporal scale of turbulence motion



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

在地貌發育過程模擬、水庫壽命評估等分析領域裡,明渠流中的懸浮載運輸都佔有一席之地。一般水利應用將其視為擴散現象,並使用移流擴散方程式(the advection-diffusion equation)進行模擬。移流擴散方程式能良好的表現平均泥沙濃度剖面,但其中最重要的參數——擴散係數(the diffusion coefficient)——往往需要藉由參數率定來取得。率定過程和泥沙顆粒在渠道中的移動無關,也不涉及紊流的流況,使得工程師在模擬懸浮載運輸時難以隨物理機制變化而調整擴散係數。 以隨機漫步理論(random walk theory)為基礎的隨機擴散粒子追蹤模型(the Stochastic Diffusion Particle Tracking Model)描繪擴散現象中粒子的移動路徑,為研究擴散係數和泥沙顆粒運動之間的關係開啟一扇大門。然而此一模型仍舊以移流擴散方程式為基礎。泥沙整體的擴散程度依循擴散係數的大小改變,模擬中泥沙顆粒移動速度的統計特性卻並不一定符合實際的物理現象。 本研究提出二隨機過程,逐步揭示單一懸浮泥沙顆粒的運動和整體懸浮載擴散之間的關係。第一部分將跳躍過程(the jump process)加入原先的維納過程(the Weiner process),模擬近底床流體結構對於泥沙運輸的影響。模擬的結果顯現隨機漫步模型考量紊流時間尺度的必要性。第二部分則從由序率模型中記憶效應的角度切入,探討數學上隨機漫步模型考量紊流時間尺度時的擴散行為。最後,本研究建議將以此為基礎提出的隨機過程作為其後研究中模型發展的軸心。

English Abstract

In the conventional analysis, suspended sediment transport is regarded as an advection-diffusion process, called turbulent diffusion, which is driven mainly by turbulence. A fairly good estimate of long-term average sediment concentration can be obtained using the advection-diffusion equation. This governing equation is widely applied for the simulation of morphology development, assessment of reservoir lifespan and so on. In hydraulic engineering, the diffusion coefficient is typically calibrated against the data, but the calibration of the diffusion coefficient is not based on the movement of particles, so the estimation of this parameter is a “black box”. Random walk theory provides a way to simulate the probabilistic trajectory of sediment particles in turbulent diffusion; however, the provided sample path may not be consistent with other physical properties of interest, such as velocity fluctuations of the sediment particles because the currently random walk model is based on the advection-diffusion equation: The second statistical moment of particle displacement is proportional to time and the spreading rate depends on the diffusion coefficient. To fill the gap between simulated particle velocity and the real flow velocity, and to explain the linkage between single particle movement and evolution of sediment concentration, two random walk-based models are proposed in this study. At first, the jump process is introduced in the stochastic diffusion particle tracking model to delineate the influence of two flow structures, called ejection and sweep events, in the near wall region on suspended sediment transport. The results of simulation demonstrate that the temporal scale of flow structures plays an important role in carrying sediment particles in suspension. Then, the mathematical impact of including the temporal scale of turbulence coherent structures in the random walk-based model is discussed in terms of memory effect. A novel stochastic process is proposed to analyze the relationship between the probability properties of turbulence velocity and the spreading behavior of the fluid particles. Based on the proposed stochastic process, an improved random walk model of suspended sediment transport is suggested.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
  1. [1] ABSI, R., MARCHANDON, S. & LAVARDE, M. 2011. Turbulent diffusion of suspended particles: analysis of the turbulent Schmidt number. In Defect and diffusion forum (ed. A. Öchsner, G. E. Murch and J. M.P.Q. Delgado), 794-799. Trans Tech Publications.
  2. [2] ADRIAN, R. J., MEINHART, C. D. & TOMKINS, C. D. 2000. Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1-54.
  3. [3] ADRIAN, R. & MARUSIC, I. 2012. Coherent structures in flow over hydraulic engineering surfaces. J. Hydraul. Res. 50.5, 451-464.
  4. [4] ANCEY, C., BOHORQUEZ, P. & HEYMAN, J. 2015. Stochastic interpretation of the advection‐diffusion equation and its relevance to bed load transport. J. Geophys. Res. Earth Surf. 120.12, 2529-2551.
  5. [5] BOSE, S. K. & DEY, S. 2010. Universal probability distributions of turbulence in open channel flows. J. Hydraul. Res. 48.3, 388-394.
  6. [6] BOSE, S. K. & DEY, S. 2013. Sediment entrainment probability and threshold of sediment suspension: exponential-based approach. J. Hydraul. Eng. 139.10, 1099-1106.
  7. [7] BOYER, D. & ROMO-CRUZ, J. C. R. Solvable random-walk model with memory and its relations with Markovian models of anomalous diffusion. Phys. Rev. E. 90.4, 042136.
  8. [8] CAO, Z. 1997. Turbulent bursting-based sediment entrainment function. J. Hydraul. Eng. 123.3, 233-236.
  9. [9] CELLINO, M. & LEMMIN, U. 2004. Influence of coherent flow structures on the dynamics of suspended sediment transport in open-channel flow. J. Hydraul. Eng. 130.11, 1077-1088.
  10. [10] CHEN, D., SUN, H. G. & ZANG, Y. 2013. Fractional dispersion equation for sediment suspension. J. Hydrol. 491, 13-22.
  11. [11] CHIEN, N., & WAN, Z. (1999). Mechanics of Sediment Transport. Translated Under the Guidance of John S. McNown. J.S., ASCE Press, Reston, VA.
  12. [12] CHONG, M.S., SORIA, J., PERRY, A. E., CHACIN, J. CANTWELL, B. J. & NA, Y. 1998. Turbulence structures of wall-bounded shear flows found using DNS data. J. Fluid Mech. 357. 225-247.
  13. [13] CRESSONI, J.C., DA SILVA, M. A. A. & VISWANATHAN, G. M. 2007. Amnestically induced persistence in random walks. Phys. Rev. Lett. 98.7, 070603.
  14. [14] COLEMAN, N. L. 1970. Flume studies of the sediment transfer coefficient. Water Resour. Res. 6.3, 801-809.
  15. [15] DEL ÁLAMO, J. C., JIMENEZ, J., ZANDONADE, P. & MOSER, R. D. 2006. Self-similar vortex clusters in the turbulent logarithmic region. ‎J. Fluid Mech. 561, 329-358.
  16. [16] DENNIS, D. J. 2015. Coherent structures in wall-bounded turbulence. An. Acad. Bras. Ciênc. 87.2, 1161-1193.
  17. [17] DENNIS, D. J. & NICKELS, T. B. 2011a. Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180-217.
  18. [18] DENNIS, D. J. & NICKELS, T. B. 2011b. Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673, 218-244.
  19. [19] DEY, S., SWARGIARY, D., SARKAR, S., FANG, H., & GAUDIO, R. 2018. Turbulence features in a wall-wake flow downstream of a wall-mounted vertical cylinder. Eur. J. Mech. B/Fluids. 69, 46-61.
  20. [20] DWIVEDI, A., MELVILLE, B. W., SHAMSELDIN, A. Y. & GUHA, T. K. 2011. Flow structures and hydrodynamic force during sediment entrainment. Water Resour. Res. 47.1.
  21. [21] EINSTEIN, H. A. 1950. The bed-load function for sediment transportation in open channel flows. Washington DC.
  22. [22] FISCHER, H. B., LIST, J. E., KOH, C. R., IMBERGER, J., & BROOKS, N. H. (1979). Mixing in inland and coastal waters. Elsevier.
  23. [23] GARDINER, C. W. 1986. Handbook of stochastic methods for physics, chemistry and the natural sciences. Berlin.
  24. [24] GRASS, A. J. 1971. Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50.2, 233-255.
  25. [25] HURTHER, D., LEMMIN, U. & TERRAY, E. A. 2007. Turbulent transport in the outer region of rough-wall open-channel flows: the contribution of large coherent shear stress structures (LC3S). J. Fluid Mech. 574, 465-493.
  26. [26] KAFTORI, D., HETSRONI, G. & BANERJEE, S. 1995. Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Phys. Fluids, 7.5, 1095-1106.
  27. [27] KATUL, G. G., ALBERTSON, J., PARLANGE, M., CHU, C. R., & STRICKER, H. 1994. Conditional sampling, bursting, and the intermittent structure of sensible heat flux. J Geophys Res Atmos. 99.D11, 22869-22876.
  28. [28] KAULAKYS, B., GONTIS, V., & ALABURDA, M. 2005. Point process model of 1/f noise vs a sum of Lorentzians. Phys. Rev. E. 71.5, 051105.
  29. [29] KLINE, S. J., REYNOLDS, W. C., SCHRAUB, F. A. & RUNSTADLER, P. W. 1967. The structure of turbulent boundary layers. J. Fluid Mech. 30.4, 741-773.
  30. [30] LASKARI, A., de KAT, R., HEARST, R. J., & GANAPATHISUBRAMANI, B. 2018. Time evolution of uniform momentum zones in a turbulent boundary layer. J. Fluid Mech. 842, 554-590.
  31. [31] LEE, H. & BALACHANDAR, S. 2012. Critical shear stress for incipient motion of a particle on a rough bed. J. Geophys. Res. Earth Surf. 117, F01026.
  32. [32] LEHEW, J. A., GUALA, M. & MCKEON, B. J. 2013. Time-resolved measurements of coherent structures in the turbulent boundary layer. ‎Exp. Fluids. 54.4, 1508.
  33. [33] MAN, C. & TSAI. C. W. 2007. Stochastic Partial Differential Equation-Based Model for Suspended Sediment Transport in Surface Water Flows. J. Eng. Mech. 133.4, 422-430.
  34. [34] MARUSIC, I. & WOODCOCK, J. D. 2016. Attached eddies and high-order statistics. In Progress in Wall Turbulence 2 (ed. M. Stanislas, J. Jimenez, I. Marusic), 47-60. Springer, Cham.
  35. [35] MATHIS, R., HUTCHINS, N. & MARUSIC, I. 2009. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech., 628, 311-337.
  36. [36] MUSTE, M., YU, K., FUJITA, I. & ETTEMA, R. 2009. Two-phase flow insights into open-channel flows with suspended particles of different densities. Environ. Fluid Mech. 9.2, 161-186.
  37. [37] NAKAGAWA, H. & NEZU, I. 1977. Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J. Fluid Mech. 80.1, 99-128.
  38. [38] NEZU, I. & NAKAGAWA, H. 1993. Turbulence in open-channel flows. Balkema.
  39. [39] NINTO, Y. & GARCIA, M. H. 1996. Experiments on particle—turbulence interactions in the near–wall region of an open channel flow: implications for sediment transport. J. Fluid Mech. 326, 285-319.
  40. [40] NOGUCHI, K. & NEZU, I. 2009. Particle–turbulence interaction and local particle concentration in sediment-laden open-channel flows. J. Hydro. Environ. Res. 3.2, 54-68.
  41. [41] OKAMOTO, T. A. & KATAYAMA, NEZU, I. 2010. Simultaneous measurements of concentration and velocity with combined PIV and planar LIF in vegetated open-channel flows. In Proc. of the International Conference on Fluvial Hydraulics, September 8-10. Braunschweig, Germany.
  42. [42] ØKSENDAL, B. 1998. Stochastic differential equations. Berlin.
  43. [43] PERRY, A. E. & MARUŠIĆ, I. 1995. A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis. J. Fluid Mech. 298, 361-388.
  44. [44] PUSEY, P. N. 2011. Brownian motion goes ballistic. Science. 332.6031, 802-803.
  45. [45] RASHIDI, M., HETSRONI, G. & BANERJEE, S. 1990. Particle-turbulence interaction in a boundary layer. Int. J. Multiph. Flow, 16.6, 935-949.
  46. [46] ROUSE, H. 1937. Modern conceptions of the mechanics of turbulence. Trans. ASCE, 102, 463-543.
  47. [47] SALIM, S., PATTIARATCHI, C., TINOCO, R., COCO, G., HETZEL, Y., WIJERATNE, S. & JAYARATNE, R. 2017. The influence of turbulent bursting on sediment resuspension under unidirectional currents. Earth Surf. Dyn. 5.3, 399.
  48. [48] SCHUTZ, G. M. & TRIMPER, S. 2004. Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk. Phys. Rev. E 70.4, 045101.
  49. [49] SILLERO, J.A. JIMENEZ, J. & MOSER, R.D. 2014. Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to δ+≈ 2000. Phys. Fluids. 26.10, 105109.
  50. [50] THEODORSEN, T. 1952. Mechanism of turbulence. In Proc. of second Midwestern Conference on Fluid Mechanics, Mar. 17-19. Ohio State University, Columbus, OH1 USA.
  51. [51] TOORMAN, E. A. 2008. Vertical mixing in the fully developed turbulent layer of sediment-laden open-channel flow. J. Hydraul. Eng. 134.9, 1225-1235.
  52. [52] TOWNSEND, A.A. 1976. The structure of turbulent shear flow. Cambridge University Press.
  53. [53] TSUJIMOTO, T. 2010. Diffusion coefficient of suspended sediment and kinematic eddy viscosity of flow containing suspended load. In River Flow (ed. A. Dittrich), 801-806.