Title

高效率異質接面太陽能元件

Translated Titles

Toward Highly Efficient Heterojunction Solar Devices: An Electrical and Optical Concurrent Design

DOI

10.6342/NTU201601008

Authors

王新平

Key Words

抗反射次波長階層結構 ; 異質接面太陽能元件 ; 表面鈍化 ; 晶界鈍化 ; 薄膜氣液固成長 ; Subwavelength-antireflective hierarchical structure ; heterjunction solar device ; surface passivation ; grain boundary passivation ; thin-film vapor-liquid-solid (TF-VLS) growth technique

PublicationName

臺灣大學光電工程學研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

博士

Advisor

林恭如

Content Language

英文

Chinese Abstract

為了得到高效率的太陽能電池,同時考慮元件光與電特性是必要的。在本論文中,將探討不同材料之異質接面太陽能元件之光電同步設計。第一、二單元討論矽基異質結構在太陽能元件上的應用。第三、四單元討論磷化铟薄膜異質結構在太陽能元件上的應用。 首先,為了克服高表面缺陷的奈米結構帶來的電性影響,在此研究中,包含奈米及微米的階層結構被用來取代傳統高表面積體積比的奈米結構,能夠達到比傳統奈米結構更佳的抗反射效果。就電性而言,利用適當的化學表面拋光,能大大提升載子生命期,與傳統微米金字塔結構不相上下,又同時保有奈米結構的高載子蒐集效率徑向p-n結。又由於非晶矽對晶矽有非常好的表面鈍化效果,能減少表面載子複合率,我們將此階層奈米結構運用在矽基異質接面太陽能電池上,能夠達到15.14%的太陽能轉換效率,是目前矽基奈米結構第二高的效率。與傳統的微米金字塔結構相比,一天能產出高於44.2%的功率。由於良好的表面鈍化,矽基異質接面能產生非常高的光伏,對太陽能分解水是非常有吸引力的。在第二部分,我們利用矽基異直接面設計產氫及產氧的光電極,同時考慮催化劑的光吸收、載子於電池中傳輸損耗,以及載子注入電解液中的速率,能保有非常高的光電流及光伏,達到目前最高的光陰極產氫效率(13.26%)。 接著,磷化铟一直以來是有潛力的太陽能元件材料,因為它的直接能隙及低載子複合率,但高昂的價格一直打壓它的實際應用。我們研發的薄膜氣-液-固成長機制可以成長橫向大面積磷化铟薄膜,有效克服這個問題,但目前材料特性及光電均勻性都還需要更多的探討。這裡我們發現利用氫電漿能夠有效改善橫向光電均勻性,氫離子能擴散至晶界進行鈍化,使得載子捕捉減少。由於電性的改善,在太陽能電池表現上能有明顯的光伏提升。最後,我們研發同時參雜p,n的成長方式,利用簡單的旋塗式玻璃做為成長的蓋子,在高溫薄膜氣-液-固成長時,允許磷擴散至铟成長磷化铟,載子也同時擴散進材料,達到參雜效果。此方法只需改變旋塗式玻璃的參雜p,n型及濃度,不同參雜濃度之三五族材料可以在同一時間成長,符合經濟效益,也提升了薄膜氣-液-固成長在光電元件上的應用。

English Abstract

To achieve high efficient solar devices, concurrent engineering design involving electrical and optical perspectives in parallel is necessary. The heterojunction is presently popular design in the photovoltaics due to the low recombination rate, leading to high open-circuit voltages (VOC). Here, we’ll focus on boosting the efficiency of heterojunction solar devices. First of all, hierarchical structures combining micropyramids and nanowires with appropriate control of surface carrier recombination represent a unique class of architectures for radial p-n junction solar cells that synergizes the advantageous features including excellent broadband, omnidirectional light-harvesting and efficient separation/collection of photoexcited carriers. The heterojunction solar cells fabricated with hierarchical structures exhibit the efficiency of 15.14% using cost-effective as-cut Czochralski n-type Si substrates, which is the second highest reported efficiency among all n-type Si nanostructured solar cells. This is also the first described omnidirectional solar cell that exhibits the daily generated power enhancement of 44.2%, as compared to conventional micropyramid control cells. The concurrent improvement in optical and electrical properties for realizing high-efficiency omnidirectional solar cells using as-cut Czochralski n-type Si substrates demonstrated here makes hierarchical architecture concept promising for large-area and cost-effective mass production. Amorphous Si (a-Si)/ crystalline Si (c-Si) heterojunction (SHJ) photoelectrochemical cells can serve as highly efficient and stable photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to a high photocurrent and high photovoltage. Both SHJ photoanodes and photocathodes are designed for high efficiency oxygen and hydrogen evolution. The SHJ photoanode with sol-gel NiOx as the catalyst shows the current density of 21.48 mA/cm2 at the equilibrium water oxidation potential. The SHJ photocathode displays excellent hydrogen evolution performance with an onset potential of 0.640 V and a solar to hydrogen conversion efficiency of 13.26%, which is the highest ever reported for Si-based photocathodes. Then, we moved to the next promising photovoltaic materials: InP. The thin-film vapor-liquid-solid (TF-VLS) growth technique presents a promising route for high quality, scalable and cost-effective InP thin films for optoelectronic devices. Towards this goal, careful optimization of material properties and device performance is of utmost interest. Here, we show that exposure of polycrystalline Zn-doped TF-VLS InP to a hydrogen plasma (in the following referred to as hydrogenation) results in improved optoelectronic quality as well as lateral optoelectronic uniformity. Notably, hydrogenation reduces the relative intra-gap defect density by one order of magnitude. As a metric to monitor lateral optoelectronic uniformity of polycrystalline TF-VLS InP, photoluminescence and electron beam induced current mapping reveal homogenization of the grain versus grain boundary upon hydrogenation. At the device level, we measured more than 260 TF-VLS InP solar cells before and after hydrogenation to verify the improved optoelectronic properties. Hydrogenation increased the average VOC of individual TF-VLS InP solar cells by up to 130 mV, and reduced the variance in VOC for the analyzed devices. Finally, we develop a growth mode that enables to simultaneously obtain InP in-situ doped with different dopants and different concentrations. The process utilizes templated liquid-phase crystal growth with the spin-on dopant (SOD) as the cap and dopant sources. n-type InP with the doping level from 1.0×1017 to 4.8×1018 cm-3 can be successfully obtained in the same growth run by controlling the dilution of Sn-doped SOD. The doping level of p-type InP could be controlled from 9.0×1016 to 3.0×1018 cm-3. Finally, we perform to simultaneously grow both n-type and p-type InP patterns on the same substrate by defining SOD with the pre-patterning metal templates. This result outlines a promising method to achieve partial in-situ doping of materials for future optoelectronic applications.

Topic Category 電機資訊學院 > 光電工程學研究所
工程學 > 電機工程
Reference
  1. Chapter 1
    連結:
  2. [1] Twidell, J.; Weir, T., Renewable Energy Resources. Taylor & Francis: 2015.
    連結:
  3. [3] Conibeer, G. Materials Today 2007, 10, 42-50.
    連結:
  4. [5] Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C. S.; Chang, J. A.; Lee, Y. H.; Kim, H. J.; Sarkar, A.; Nazeeruddin, K.; Gratzel, M.; Seok, S. I. Nat. Photon. 2013, 7, 486-491.
    連結:
  5. [6] Tsai, M. L.; Su, S. H.; Chang, J. K.; Tsai, D. S.; Chen, C. H.; Wu, C. I.; Li, L. J.; Chen, L. J.; He, J. H. ACS Nano 2014, 8, 8317-8322.
    連結:
  6. [7] Wei, W. R.; Tsai, M. L.; Ho, S. T.; Tai, S. H.; Ho, C. R.; Tsai, S. H.; Liu, C. W.; Chung, R. J.; He, J. H. Nano Lett. 2013, 13, 3658-3663.
    連結:
  7. [17] Thompson, K.; Booske, J. H.; Larson, D. J.; Kelly, T. F. Three-Dimensional Atom Mapping of Dopants in Si Nanostructures. Appl. Phys. Lett. 2005, 87, 052108.
    連結:
  8. [18] Thompson, K.; Bunton, J. H.; Kelly, T. F.; Larson, D. J. Characterization of Ultralow-Energy Implants and Towards the Analysis of Three-Dimensional Dopant Distributions Using Three-Dimensional Atom-Probe Tomography. J. Vac. Sci. Technol. B 2006, 24, 421-427.
    連結:
  9. [19] Johnson, N. M.; Biegelsen, D. K.; Moyer, M. D. Deuterium Passivation of Grain‐Boundary Dangling Bonds in Silicon Thin Films. Appl. Phys. Lett. 1982, 40, 882-884.
    連結:
  10. [1] Hsu, C. Y.; Lien, D. H.; Lu, S. Y.; Chen, C. Y.; Kang, C. F.; Chueh, Y. L.; Hsu, W. K.; He, J. H. ACS Nano 2012, 6, 6687-6692.
    連結:
  11. [2] Tsai, D. S.; Lin, C. A.; Lien, W. C.; Chang, H. C.; Wang, Y. L.; He, J. H. ACS Nano 2011, 5, 7748-7753.
    連結:
  12. [6] Tsai, S. H.; Chang, H. C.; Wang, H. H.; Chen, S. Y.; Lin, C. A.; Chen, S. A.; Chueh, Y. L.; He, J. H. ACS Nano 2011, 5, 9501-9510.
    連結:
  13. [7] Wei, W. R.; Tsai, M. L.; Ho, S. T.; Tai, S. H.; Ho, C. R.; Tsai, S. H.; Liu, C. W.; Chung, R. J.; He, J. H. Nano Lett. 2013, 13, 3658-3663.
    連結:
  14. [10] Lin, Y. R.; Lai, K. Y.; Wang, H. P.; He, J. H. Nanoscale 2010, 2, 2765-2768.
    連結:
  15. [11] Chang, H. C.; Lai, K. Y.; Dai, Y. A.; Wang, H. H.; Lin, C. A.; He, J. H. Energ. Environ. Sci. 2011, 4, 2863-2869.
    連結:
  16. [17] Garnett, E.; Yang, P. Nano Lett. 2010, 10, 1082-1087.
    連結:
  17. [18] Garnett, E. C.; Yang, P. J. Am. Chem. Soc. 2008, 130, 9224-9225.
    連結:
  18. [26] Kazmerski, L. L. Renew. Sust. Energ. Rev. 1997, 1, 71-170.
    連結:
  19. [30] Wang, T. H.; Iwaniczko, E.; Page, M. R.; Levi, D. H.; Yan, Y.; Branz, H. M.; Wang, Q. Thin Solid Films 2006, 501, 284-287.
    連結:
  20. [36] Woo-Byoung, K. A.; Matsumoto, T.; Kobayashi, H. Appl. Phys. Lett. 2008, 93, 072101.
    連結:
  21. [38] Lien, S.-Y.; Yang, C.-H.; Hsu, C.-H.; Lin, Y.-S.; Wang, C.-C.; Wuu, D.-S. Mater. Chem. Phys. 2012, 133, 63-68.
    連結:
  22. [39] Xiu, Y.; Zhang, S.; Yelundur, V.; Rohatgi, A.; Hess, D. W.; Wong, C. P. Langmuir 2008, 24, 10421-10426.
    連結:
  23. [42] Bullis, W. M.; Huff, H. R. J. Electrochem. Soc. 1996, 143, 1399-1405.
    連結:
  24. [4] Sun, K.; Shen, S.; Liang, Y.; Burrows, P. E.; Mao S. S.; Wang, D. Chem. Rev., 2014, 114, 8662-8719.
    連結:
  25. [7] Kenney, M. J.; Gong, M.; Li, Y.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. Science 2013, 342, 836-840.
    連結:
  26. [16] Nozik, A. J. Appl. Phys. Lett. 1976, 29, 150-153.
    連結:
  27. [19] Olibet, S., Phys. Status Solidi A 2010, 207, 651-656.
    連結:
  28. [21] Wang, H. P.; Lin, T. Y.; Tsai, M. L.; Tu, W. C.; Huang, M. Y.; Liu, C. W.; Chueh, Y. L.; He, J. H. ACS Nano 2014, 8, 2959-2969.
    連結:
  29. [25] Wang, H. P.; Lin, T. Y.; Hsu, C. W.; Tsai, M. L.; Huang, C. H.; Wei, W. R.; Huang, M. Y.; Chien, Y. J.; Yang, P. C.; Liu, C. W.; Chou, L. J.; He, J. H. ACS Nano 2013, 7, 9325-9335.
    連結:
  30. [26] Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Science 2013, 340, 60-63.
    連結:
  31. [28] Sun, K.; Pang, X.; Shen, S.; Qian, X.; Cheung, J. S.; Wang, D. Nano Lett. 2013, 13, 2064-2072.
    連結:
  32. [29] Sun, K.; Shen, S.; Cheung, J. S.; Pang, X.; Park, N.; Zhou, J.; Hu, Y.; Sun, Z.; Noh, S. Y.; Riley, C. T.; Yu, P. K. L.; Jin, S.; Wang, D. Phys. Chem. Chem. Phys. 2014, 16, 4612-4625.
    連結:
  33. [32] Corrigan, D. A. J. Electrochem. Soc. 1987, 134, 377-384.
    連結:
  34. [33] Greiner, M. T.; Chai, L.; Helander, M. G.; Tang, W.-M.; Lu, Z.-H. Adv. Funct. Mater. 2012, 22, 4557-4568.
    連結:
  35. [34] Nakagawa, T.; Bjorge, N. S.; Murray, R. W. J. Am. Chem. Soc. 2009, 131, 15578-15579.
    連結:
  36. [37] Wei, W. R.; Tsai, M. L.; Ho, S. T.; Tai, S. H.; Ho, C. R.; Tsai, S. H.; Liu, C. W.; Chung, R. J.; He, J. H. Nano Lett. 2013, 13, 3658-3663.
    連結:
  37. [44] Weber, M. F.; Dignam, M. J. J. Electrochem. Soc. 1984, 131, 1258-1265.
    連結:
  38. [45] Wang, H. P.; Lien, D. H.; Tsai, M. L.; Lin, C. A.; Chang, H. C.; Lai, K. Y.; He, J. H. J. Mater. Chem. C 2014, 2, 3144-3171.
    連結:
  39. [2] Beling, A.; Campbell, J. C. J. Lightwave Technol. 2009, 27, 343-355.
    連結:
  40. [3] Li, K.; Sun, H.; Ren, F.; Ng, K. W.; Tran, T. T. D.; Chen, R.; Chang-Hasnain, C. J. Nano Lett. 2014, 14, 183-190.
    連結:
  41. [6] Henry, C. H. J. Appl. Phys. 1980, 51, 4494-4500.
    連結:
  42. [13] Friedrich, J.; Kallinger, B.; Knoke, I.; Berwian, P.; Meissner, E. 20th Indium Phosphide and Related Materials (IPRM), 2008, 1-6.
    連結:
  43. [14] Van de Walle, C. G.; Neugebauer, J. Annu. Rev. Mater. Res. 2006, 36, 179-198.
    連結:
  44. [15] Van de Walle, C. G.; Neugebauer, J. Nature 2003, 423, 626-628.
    連結:
  45. [16] Omeljanovsky, E. M.; Pakhomov, A. V.; Polyakov, A. Y. J. Electron. Mater. 1989, 18, 659-670.
    連結:
  46. [23] Tuck, B.; Hooper, A. J. Phys. D: Appl. Phys. 1975, 8, 1806-1821.
    連結:
  47. [25] Katz, A. Adv. Mater. 1993, 5, 228-229.
    連結:
  48. [30] Heath, J. T.; Cohen, J. D.; Shafarman, W. N.; Liao, D. X.; Rockett, A. A. Appl. Phys. Lett. 2002, 80, 4540-4542.
    連結:
  49. [37] Holt, D. B.; Joy, D. C. SEM Microcharacterization of Semiconductors. Academic, UK, 1986.
    連結:
  50. [2] Chen, K.; Kapadia, R.; Harker, A.; Desai, S.; Seuk Kang, J.; Chuang, S.; Tosun, M.; Sutter-Fella, C. M.; Tsang, M.; Zeng, Y.; Kiriya, D.; Hazra, J.; Madhvapathy, S. R.; Hettick, M.; Chen, Y.-Z.; Mastandrea, J.; Amani, M.; Cabrini, S.; Chueh, Y.-L.; Ager Iii, J. W.; Chrzan, D. C.; Javey, A. Nat Commun 2016, 7, 10502 .
    連結:
  51. [5] Nakamura, S.; Mukai, T.; Senoh, M. Appl. Phys. Lett. 1994, 64, 1687-1689.
    連結:
  52. [6] Ko, H.; Takei, K.; Kapadia, R.; Chuang, S.; Fang, H.; Leu, P. W.; Ganapathi, K.; Plis, E.; Kim, H. S.; Chen, S.-Y.; Madsen, M.; Ford, A. C.; Chueh, Y.-L.; Krishna, S.; Salahuddin, S.; Javey, A. Nature 2010, 468, 286-289.
    連結:
  53. [8] Campbell, J. C. LT. J. Lightw. Technol. 2007, 25, 109-121.
    連結:
  54. [17] Onton, A.; Chicotka, R. J. Phys. Rev. B 1971, 4, 1847-1853.
    連結:
  55. [29] Gel, M.; Shimoyama, I. Journal of Micromechanics and Microengineering 2004, 14, 423.
    連結:
  56. [30] Burstein, E. Phys. Rev. 1954, 93, 632-633.
    連結:
  57. [31] Moss, T. S. Proc. Phys. Soc. Sect. B 1954, 67, 775.
    連結:
  58. [34] Kurik, M. V. Phys. Status Solidi (a) 1971, 8, 9-45.
    連結:
  59. [39] Bacher, F. R.; Leigh, W. B. Journal of Crystal Growth 1987, 80, 456-458.
    連結:
  60. [40] Rosenwaks, Y.; Shapira, Y.; Huppert, D. Phys. Rev. B 1991, 44, 13097-13100.
    連結:
  61. [2] McJeon, H.; Edmonds, J.; Bauer, N.; Clarke, L.; Fisher, B.; Flannery, B. P.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M. Nature 2014, 514, 482-485.
  62. [4] Zheng, M.; Wang, H. P.; Sutter-Fella, C. M.; Battaglia, C.; Aloni, S.; Wang, X.; Moore, J.; Beeman, J. W.; Hettick, M.; Amani, M.; Hsu, W. T.; Ager, J. W.; Bermel, P.; Lundstrom, M.; He, J. H.; Javey, A., T Adv. Energy Mater. 2015, 5, 1501337.
  63. [8] Avasthi, S.; Lee, S.; Loo, Y. L.; Sturm, J. C. Adv. Mater. 2011, 23, 5762-5766.
  64. [9] Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Science 1999, 285, 692-698.
  65. [10] DeWolf, S., Descoeudres, A., Holman, Z. C., & Ballif, C. Green 2012, 2, 7-24.
  66. [11] Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S. IEEE J. Photovolt. 2014, 4, 1433-1435.
  67. [12] Hajime, G.; Katsutoshi, N.; Katsuhiro, T.; Shinjiro, H.; Kenji, H.; Junichi, M.; Takashi, F. Applied Physics Express 2009, 2, 035004.
  68. [13] Kupec, J.; Stoop, R. L.; Witzigmann, B. Opt. Express 2010, 18, 27589-27605.
  69. [14] Tavakoli, M. M.; Lin, Q.; Leung, S.-F.; Lui, G. C.; Lu, H.; Li, L.; Xiang, B.; Fan, Z. Nanoscale 2016, 8, 4276-4283.
  70. [15] Huang, B.-R.; Yang, Y.-K.; Lin, T.-C.; Yang, W.-L. Sol. Energ. Mat. Sol. Cells. 2012, 98, 357-362.
  71. [16] Da, Y.; Xuan, Y. Opt. Express 2013, 21, A1065-A1077.
  72. Chapter 2
  73. [3] Wierer, J. J.; David, A.; Megens, M. M. Nat. Photonics 2009, 3, 163-169.
  74. [4] Zhu, J.; Yu, Z.; Fan, S.; Cui, Y. Mater. Sci. Eng. Rep. 2010, 70, 330-340.
  75. [5] Lin, Q.; Hua, B.; Leung, S.-f.; Duan, X.; Fan, Z. ACS Nano 2013, 7, 2725-2732.
  76. [8] Wang, H. P.; Lai, K. Y.; Lin, Y. R.; Lin, C. A.; He, J. H. Langmuir 2010, 26, 12855-12858.
  77. [9] Dai, Y. A.; Chang, H. C.; Lai, K. Y.; Lin, C. A.; Chung, R. J.; Lin, G. R.; He, J. H. J. Mater. Chem. 2010, 20, 10924-10930.
  78. [12] Peng, K.-Q.; Lee, S.-T. Adv. Mater. 2011, 23, 198-215.
  79. [13] Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A. Nat. Mater. 2010, 9, 239-244.
  80. [14] Adachi, M. M.; Anantram, M. P.; Karim, K. S. Sci. Rep. 2013, 3, 1-6.
  81. [15] Jia, G.; Eisenhawer, B.; Dellith, J.; Falk, F.; Th?gersen, A.; Ulyashin, A. J. Phys. Chem. C 2013, 117, 1091-1096.
  82. [16] Oh, J.; Yuan, H.-C.; Branz, H. M. Nat. Nanotechnol. 2012, 7, 743-748.
  83. [19] Kopecek, R.; Libal, J.; Buck, T.; Peter, K.; Wambach, K.; Acciarri, M.; Binetti, S.; Geerligs, L. J.; Fath, P. in: Proceedings of the 31st IEEE Photovoltaic Specialists Conference 2005, 1257-1260.
  84. [20] Panasonic Corp. http://panasonic.co.jp/corp/news/official.data/data.dir/2013/02/en130212-7/en130212-7.pdf 2013.
  85. [21] Descoeudres, A.; Holman, Z. C.; Barraud, L.; Morel, S.; De Wolf, S.; Ballif, C. IEEE J. Photovoltaics 2013, 3, 83-89.
  86. [22] Cuevas, A.; Kerr, M. J.; Samundsett, C.; Ferrazza, F.; Coletti, G. Millisecond Appl. Phys. Lett. 2002, 81, 4952-4954.
  87. [23] Glunz, S. W.; Rein, S.; Lee, J. Y.; Warta, W. J. Appl. Phys. 2001, 90, 2397-2404.
  88. [24] Geerligs, L. J.; Macdonald, D. Prog. Photovolt: Res. Appl. 2004, 12, 309-316.
  89. [25] Chao, Y. C.; Chen, C. Y.; Lin, C. A.; He, J. H. Energy Environ. Sci. 2011, 4, 3436-3441.
  90. [27] Huang, Z.; Shimizu, T.; Senz, S.; Zhang, Z.; Zhang, X.; Lee, W.; Geyer, N.; Gösele, U. Nano Lett. 2009, 9, 2519-2525.
  91. [28] Huang, Z.; Geyer, N.; Werner, P.; de Boor, J.; Gösele, U. Adv. Mater. 2011, 23, 285-308.
  92. [29] Olibet, S.; Monachon, C.; Hessler-Wyser, A.; Vallat-Sauvain, E.; Fesquet, L.; Damon-Lacoste, J.; De-Wolf, S.; Ballif, C. in: Proceedings of the 22nd EUPVSEC 2008, 1140-1144.
  93. [31] K. Das, U.; Burrows, M. Z.; Lu, M.; Bowden, S.; Birkmire, R. W. Appl. Phys. Lett. 2008, 92, 063504.
  94. [32] Xiu, Y.; Zhu, L.; Hess, D. W.; Wong, C. P. Nano Lett. 2007, 7, 3388-3393.
  95. [33] Jia, G.; Steglich, M.; Sill, I.; Falk, F. Sol. Energ. Mat. Sol. C. 2012, 96, 226-230.
  96. [34] Edwards, M.; Bowden, S.; Das, U.; Burrows, M. Sol. Energ. Mat. Sol. C. 2008, 92, 1373-1377.
  97. [35] Schmidt, V.; Senz, S.; Gösele, U. Nano Lett. 2005, 5, 931-935.
  98. [37] Kobayashi, H.; Imamura, K.; Kim, W. B.; Im, S. S.; Asuha. Appl. Surf. Sci. 2010, 256, 5744-5756.
  99. [40] Ozdemir, B.; Kulakci, M.; Turan, R.; Unalan, H. E. Nanotechnology 2011, 22, 155606 (7pp).
  100. [41] Li, H. F.; Jia, R.; Chen, C.; Xing, Z.; Ding, W. C.; Meng, Y. L.; Wu, D. Q.; Liu, X. Y.; Ye, T. C. Appl. Phys. Lett. 2011, 98, 151116.
  101. [43] Damon-Lacoste, J.; Labrune, M.; Granata, S.; Daineka, D.; Roca i Cabarrocas, P. in Photovoltaic Specialists Conference (PVSC) 35th IEEE 2010, 001352-001357.
  102. [44] Kempa, T. J.; Cahoon, J. F.; Kim, S.-K.; Day, R. W.; Bell, D. C.; Park, H.-G.; Lieber, C. M. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 1409−1412.
  103. [45] Solanki, C. S. PHI Leaning Private Ltd.: New Delhi 2009.
  104. [46] Veschetti, Y.; Muller, J. C.; Damon-Lacoste, J.; Roca i Cabarrocas, P.; Gudovskikh, A. S.; Kleider, J. P.; Ribeyron, P. J.; Rolland, E. in Photovoltaic Specialists Conference 31th IEEE 2005, 1131-1134.
  105. [47] Sark, W. G. J. H. M. van; Korte, L.; Roca, F. Springer Verlag: Heidelberg, Germany 2011, 180-181.
  106. Chapter 3
  107. [1] Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446-6473.
  108. [2] Hu, S.; Xiang, C.; Haussener, S.; Berger, A. D.; Lewis, N. S. Energy Environ. Sci. 2013, 6, 2984-2993.
  109. [3] McKone, J. R.; Lewis, N. S.; Gray, H. B. Chem. Mater. 2014, 26, 407-414.
  110. [5] Chen, Y. W.; Prange, J. D.; Dühnen, S.; Park, Y.; Gunji, M.; Chidsey, C. E. D.; McIntyre, P. C. Nat. Mater. 2011, 10, 539-544.
  111. [6] Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. J. Am. Chem. Soc. 2013, 135, 1057-1064.
  112. [8] Seger, B.; Tilley, D. S.; Pedersen, T.; Vesborg, P. C. K.; Hansen, O.; Gratzel, M.; Chorkendorff, I. RSC Adv. 2013, 3, 25902-25907.
  113. [9] Choi, M. J.; Jung, J.-Y.; Park, M.-J.; Song, J.-W.; Lee, J.-H.; Bang, J. H. J. Mater. Chem. A 2014, 2, 2928-2933.
  114. [10] Hu, S.; Shaner, M. R.; Beardslee1, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Science 2014, 344, 1005-1009.
  115. [11] Lin, Y.; Battaglia, C.; Boccard, M.; Hettick, M.; Yu, Z.; Ballif, C.; Ager, J. W.; Javey, A. Nano Lett. 2013, 13, 5615-5618.
  116. [12] Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. J. Am. Chem. Soc. 2011, 133, 1216-1219.
  117. [13] Cox, C. R.; Winkler, M. T.; Pijpers, J. J. H.; Buonassisi, T.; Nocera, D. G. Energy Environ. Sci. 2013, 6, 532-538..
  118. [14] Pijpers, J. J. H., Winkler, M. T., Surendranath, Y., Buonassisi, T. & Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 10056-10061.
  119. [15] Yang, J.; Walczak, K.; Anzenberg, E.; Toma, F. M.; Yuan, G.; Beeman, J.; Schwartzberg, A.; Lin, Y.; Hettick, M.; Javey, A.; Ager, J. W.; Yano, J.; Frei, H.; Sharp, I. D. J. Am. Chem. Soc. 2014, 136, 6191-6194.
  120. [17] Terlinden, N. M.; Dingemans, G.; van de Sanden, M. C. M.; Kessels, W. M. M. Appl. Phys. Lett. 2010, 96, 112101-112101-3.
  121. [18] Sawada, T.; Terada, N.; Tsuge, S.; Baba, T.; Takahama, T.; Wakisaka, K.; Tsuda, S.; Nakano, S. In Proceedings of 24th IEEE Photovoltaics Specialists Conference, Waikoloa, HI, USA, 5-9 December, 1994, 2, 1219-1226.
  122. [20] Yablonovitch, E.; Gmitter, T.; Swanson, R. M.; Kwark, Y. H. Appl. Phys. Lett. 1985, 47, 1211-1213.
  123. [22] Panasonic Corp. 2014, http://panasonic.co.jp/corp/news/official.data/data.dir/2014/04/en140410-4/en140410-4.html.
  124. [23] Hwang, Y. J.; Boukai, A.; Yang, P. Nano Lett. 2008, 9, 410-415.
  125. [24] Oh, I.; Kye, J.; Hwang, S. Nano Lett. 2011, 12, 298-302.
  126. [27] Sun, K.; Park, N.; Sun, Z.; Zhou, J.; Wang, J.; Pang, X.; Shen, S.; Noh, S. Y.; Jing, Y.; Jin, S.; Yu, P. K. L.; Wang, D. Energy Environ. Sci. 2012, 5, 7872-7877.
  127. [30] McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2013, 135, 16977-16987.
  128. [31] Chen, Z.; Jaramillo, T. F.; Deutsch, T. G.; Kleiman-Shwarsctein, A.; Forman, A. J.; Gaillard, N.; Garland, R.; Takanabe, K.; Heske, C.; Sunkara, M.; McFarland, E. W.; Domen, K.; Miller, E. L.; Turner, J. A.; Dinh, H. N. J. Mater. Res. 2010, 25, 3-16.
  129. [35] Yagi, M.; Tomita, E.; Sakita, S.; Kuwabara, T.; Nagai, K. J. Phys. Chem. B 2005, 109, 21489-21491.
  130. [36] Ouattara, L.; Diaco, T.; Duo, I.; Panizza, M.; Foti, G.; Comninellis, C. J. Electrochem. Soc. 2003, 150, D41-D45.
  131. [38] Peng, K.-Q.; Wang, X.; Wu, X.-L.; Lee, S.-T. Nano Lett. 2009, 9, 3704-3709.
  132. [39] Somik, M.; Balavinayagam, R.; Lauren, G.; Steven, H.; Gary, A. B.; Phil, F.; Shramik, S.; Shubhra, G. Nanotechnology 2012, 23, 485405.
  133. [40] Lombardi, I.; Marchionna, S.; Zangari, G.; Pizzini, S. Langmuir 2007, 23, 12413-12420.
  134. [41] Warren, E. L.; Boettcher, S. W.; Walter, M. G.; Atwater, H. A.; Lewis, N. S. J. Phys. Chem. C 2010, 115, 594-598.
  135. [42] Folcher, G.; Cachet, H.; Froment, M.; Bruneaux, J. Thin Solid Films 1997, 301, 242-248.
  136. [43] Esposito, D. V.; Levin, I.; Moffat, T. P.; Talin, A. A. Nat. Mater. 2013, 12, 562-568.
  137. Chapter 4
  138. [1] Hettick, M.; Zheng, M.; Lin, Y.; Sutter-Fella, C. M.; Ager, J. W.; Javey, A. J. Phys. Chem. Lett. 2015, 6, 2177-2182.
  139. [4] Haruhisa, S.; Ken-ichi, I.; Chiyuki, K.; Yasuharu, S. Jpn. J. Appl. Phys. 1979, 18, 2329-2330.
  140. [5] Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B.; Xu, H. Q.; Samuelson, L.; Deppert, K.; Borgström, M. T. Science 2013, 339, 1057-1060.
  141. [7] Kapadia, R.; Yu, Z.; Wang, H.-H. H.; Zheng, M.; Battaglia, C.; Hettick, M.; Kiriya, D.; Takei, K.; Lobaccaro, P.; Beeman, J. W.; Ager, J. W.; Maboudian, R.; Chrzan, D. C.; Javey, A. A Sci. Rep. 2013, 3, 2275.
  142. [8] Zheng, M.; Wang, H. P.; Sutter-Fella, C. M.; Battaglia, C.; Aloni, S.; Wang, X.; Moore, J.; Beeman, J. W.; Hettick, M.; Amani, M.; Hsu, W. T.; Ager, J. W.; Bermel, P.; Lundstrom, M.; He, J. H.; Javey, A., T Adv. Energy Mater. 2015, 5, 1501337.
  143. [9] Yin, X.; Battaglia, C.; Lin, Y.; Chen, K.; Hettick, M.; Zheng, M.; Chen, C. Y.; Kiriya, D.; Javey, A. ACS Photonics 2014, 1, 1245-1250.
  144. [10] Thompson, K.; Booske, J. H.; Larson, D. J.; Kelly, T. F. Appl. Phys. Lett. 2005, 87, 052108.
  145. [11] Thompson, K.; Bunton, J. H.; Kelly, T. F.; Larson, D. J. J. Vac. Sci. Technol. B 2006, 24, 421-427.
  146. [12] Johnson, N. M.; Biegelsen, D. K.; Moyer, M. D. Appl. Phys. Lett. 1982, 40, 882-884.
  147. [17] Chevallier, J.; Jalil, A.; Theys, B.; Pesant, J. C.; Aucouturier, M.; Rose, B.; Mircea, A. Semicond. Sci. Technol. 1989, 4, 87-90.
  148. [18] Dautremont‐Smith, W. C.; Lopata, J.; Pearton, S. J.; Koszi, L. A.; Stavola, M.; Swaminathan, V. J. Appl. Phys. 1989, 66, 1993-1996.
  149. [19] Chatterjee, B.; Ringel, S. A.; Sieg, R.; Hoffman, R.; Weinberg, I. Appl. Phys. Lett. 1994, 65, 58-60.
  150. [20] McMurray Jr, R. E.; Haegel, N. M.; Kahn, J. M.; Haller, E. E. Solid State Commun. 1987, 61, 27-32.
  151. [21] Tsai, M. J.; Fahrenbruch, A. L.; Bube, R. H. J. Appl. Phys. 1980, 51, 2696-2705.
  152. [22] Temkin, H.; Dutt, B. V.; Bonner, W. A.; Keramidas, V. G. J. Appl. Phys. 1982, 53, 7526-7533.
  153. [24] van Gurp, G. J.; van Dongen, T.; Fontijn, G. M.; Jacobs, J. M.; Tjaden, D. L. A., J. Appl. Phys. 1989, 65, 553-560.
  154. [26] Grabmaier, J. G. Silicon. Springer-Verlag Berlin and Heidelberg GmbH, Berlin, Germany, 2013.
  155. [27] Warren, C. W.; Li, J.; Wolden, C. A.; Meysing, D. M.; Barnes, T. M.; Miller, D. W.; Heath, J. T.; Lonergan, M. C. Appl. Phys. Lett. 2015, 106, 203903.
  156. [28] Miller, D. W.; Warren, C. W.; Gunawan, O.; Gokmen, T.; Mitzi, D. B.; Cohen, J. D. Appl. Phys. Lett. 2012, 101, 142106.
  157. [29] Boucher, J. W.; Miller, D. W.; Warren, C. W.; Cohen, J. D.; McCandless, B. E.; Heath, J. T.; Lonergan, M. C.; Boettcher, S. W. Energy Mater. Sol. Cells 2014, 129, 57-63.
  158. [31] Montie, E. A.; van Gurp, G. J. J. Appl. Phys. 1989, 66, 5549-5553.
  159. [32] Hsu, J. K.; Juang, C.; Lee, B. J.; Chi, G. C. J. Vac. Sci. Technol., B 1994, 12, 1416-1418.
  160. [33] Banerjee, S.; Srivastava, A. K.; Arora, B. M. J. Appl. Phys. 1990, 68, 2324-2330.
  161. [34] Swaminathan, V.; Donnelly, V. M.; Long, J. J. Appl. Phys. 1985, 58, 4565-4572.
  162. [35] Mullin, J. B.; Royle, A.; Straughan, B. W.; Tufton, P. J.; Williams, E. W. J. Cryst. Growth 1972, 13, 640-646.
  163. [36] Pearton, S. J.; Corbett, J. W.; Shi, T. S. Appl. Phys. A 1987, 43, 153-195.
  164. [38] Chen, J.; Sekiguchi, T.; Yang, D.; Yin, F.; Kido, K.; Tsurekawa, S. J. Appl. Phys. 2004, 96, 5490-5495.
  165. [39] Heitjans, P.; Kr̃ger, J. Diffusion in Condensed Matter: Methods, Materials, Models. Springer, Berlin, Germany, 2005.
  166. [40] Virtuani, A.; Lotter, E.; Powalla, M.; Rau, U.; Werner, J. H.; Acciarri, M. J. Appl. Phys. 2006, 99, 014906.
  167. [41] Thibault, J.; Rouviere, J.-L.; Bourret, A. Grain Boundaries in Semiconductors, In Handbook of Semiconductor Technology, Wiley-VCH Verlag GmbH, Germany, 2008, 377-451.
  168. Chapter 5
  169. [1] Zheng, M.; Wang, H. P.; Sutter-Fella, C. M.; Battaglia, C.; Aloni, S.; Wang, X.; Moore, J.; Beeman, J. W.; Hettick, M.; Amani, M.; Hsu, W. T.; Ager, J. W.; Bermel, P.; Lundstrom, M.; He, J. H.; Javey, A., T Adv. Energy Mater. 2015, 5, 1501337.
  170. [3] Madelung, O.; Von der Osten, W.; Rössler, U., Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds Springer Science & Business Media: 1986, 22.
  171. [4] Bimberg, D.; Kirstaedter, N.; Ledentsov, N. N.; Alferov, Z. I.; Kop'ev, P. S.; Ustinov, V. M. IEEE J. Sel. Top. Quant. Electron. 1997, 3 196-205.
  172. [7] Yoon, J.; Jo, S.; Chun, I. S.; Jung, I.; Kim, H.-S.; Meitl, M.; Menard, E.; Li, X.; Coleman, J. J.; Paik, U.; Rogers, J. A. Nature 2010, 465, 329-333.
  173. [9] Goldstein, L.; Glas, F.; Marzin, J. Y.; Charasse, M. N.; Le Roux, G. Appl. Phys. Lett. 1985, 47,1099-1101.
  174. [10] Kurtz, S. R.; Allerman, A. A.; Jones, E. D.; Gee, J. M.; Banas, J. J.; Hammons, B. E. Appl. Phys. Lett. 999, 74, 729-731.
  175. [11] Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Appl. Phys. Lett. 986, 48, 353-355.
  176. [12] Henoc, P.; Izrael, A.; Quillec, M.; Launois, H. Appl. Phys. Lett. 1982, 40, 963-965.
  177. [13] Dijkkamp, D.; Venkatesan, T.; Wu, X. D.; Shaheen, S. A.; Jisrawi, N.; Min‐Lee, Y. H.; McLean, W. L.; Croft, M. Appl. Phys. Lett. 1987, 51, 619-621.
  178. [14] Kapadia, R.; Yu, Z.; Wang, H.-H. H.; Zheng, M.; Battaglia, C.; Hettick, M.; Kiriya, D.; Takei, K.; Lobaccaro, P.; Beeman, J. W.; Ager, J. W.; Maboudian, R.; Chrzan, D. C.; Javey, A. Sci Rep. 2013, 3, 2275.
  179. [15] Kapadia, R.; Yu, Z.; Hettick, M.; Xu, J.; Zheng, M. S.; Chen, C.-Y.; Balan, A. D.; Chrzan, D. C.; Javey, A. Chem. Mater. 2014, 26, 1340-1344.
  180. [16] Seiji, M.; Masatoshi, M.; Jun'ichi, S. Jpn. J. Appl. Phys. 1980, 19, L505.
  181. [18] van Weert, M. H. M.; Wunnicke, O.; Roest, A. L.; Eijkemans, T. J.; Yu Silov, A.; Haverkort, J. E. M.; ’t Hooft, G. W.; Bakkers, E. P. A. M. Appl. Phys. Lett. 2006, 88, 043109.
  182. [19] Akiko, G.; Hitoshi, H.; Isao, H.; Seiji, K.; Kenichi, K.; Tohru, S. Jpn. J. Appl. Phys. 1989, 28 , L1330.
  183. [20] Bugajski, M.; Lewandowski, W. J. Appl. Phys. 1985, 57, 521-530.
  184. [21] Wallentin, J.; Mergenthaler, K.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K.; Pistol, M.-E.; Borgström, M. T. Nano Lett. 2011, 11, 2286-2290.
  185. [22] Palankovski, V.; Kaiblinger-Grujin, G.; Selberherr, S. Mater. Sci. Eng. B 1999, 66, 46-49.
  186. [23] Jones, K. S.; Prussin, S.; Weber, E. R. Appl. Phys. A 1998, 45, 1-34.
  187. [24] Chen, S. K.; Majoros, M.; MacManus-Driscoll, J. L.; Glowacki, B. A. Physica C Supercond. 2005, 418 , 99-106.
  188. [25] Yu, K. M.; Moll, A. J.; Walukiewicz, W. J. Appl. Phys. 1996, 80, 4907-4915.
  189. [26] Perraud, S.; Poncet, S.; Noël, S.; Levis, M.; Faucherand, P.; Rouvière, E.; Thony, P.; Jaussaud, C.; Delsol, R. Sol. Energ. Mat. Sol. Cells 2009, 93, 1568-1571.
  190. [27] Ruby, D. S.; Zaidi, S. H.; Narayanan, S.; Damiani, B. M.; Rohatgi, A. Sol. Energ. Mat. Sol. Cells 2002, 74, 133-137.
  191. [28] Zhu, Z.-T.; Menard, E.; Hurley, K.; Nuzzo, R. G.; Rogers, J. A. Appl. Phys. Lett. 2005, 86, 133507.
  192. [32] Sieg, R. M.; Ringel, S. A. J. Appl. Phys. 1996, 80, 448-458.
  193. [33] Williams, E. W.; Elder, W.; Astles, M. G.; Webb, M.; Mullin, J. B.; Straughan, B.; Tufton, P. J. J. Electrochem. Soc. 1973, 120, 1741-1749.
  194. [35] Hettick, M.; Zheng, M.; Lin, Y.; Sutter-Fella, C. M.; Ager, J. W.; Javey, A. The J. Phys. Chem. Lett. 2015, 6, 2177-2182.
  195. [36] Röder, O.; Heim, U.; Pilkuhn, M. H. J. Phys. D: Appl. Phys. Solids 1970, 31, 2625-2634.
  196. [37] Haufe, A.; Schwabe, R.; Feiseler, H.; Ilegems, M. J Phys C Solid State Phys 1988, 21, 2951.
  197. [38] Morkoç, H., Extended and Point Defects, Doping, and Magnetism. In Handbook of Nitride Semiconductors and Devices, Wiley-VCH Verlag GmbH & Co. KGaA: 2009; 817-1229.
  198. [41] Rosenwaks, Y.; Shapira, Y.; Huppert, D. Phys. Rev. B 1992, 45, 9108-9119.