Title

以α-葡萄糖苷酶之活性抑制為主軸探討五倍子之調節血糖功能與成分

Translated Titles

Anti-hyperglycemia activity of Galla chinensis based on the inhibition of α- glucosidase activity

DOI

10.6342/NTU.2010.02058

Authors

林佳雯

Key Words

糖尿病 ; 調節血糖 ; 五倍子 ; α-葡萄糖苷酶抑制劑 ; diabetes mellitus ; Galla chinensis ; α-glucosidase inhibitor ; 1 ,2,3,6-tetra- O-galloyl-β-d-glucose ; 1,2,3,4,6-penta-O-galloyl-β-d-glucose

PublicationName

臺灣大學食品科技研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

蔣丙煌

Content Language

繁體中文

Chinese Abstract

糖尿病(diabetes mellitus;DM)為目前全球流行之慢性代謝疾病,在台灣,糖尿病多年來皆位於十大死因前五名之列,由於糖尿病患者體內長期處於高血糖之狀態,會進一步造成其病症惡化以及引發多種併發症,而飯後高血糖為造成糖尿病患許多併發症之主因之一。目前在治療糖尿病之主要藥物中,只有α-葡萄糖苷酶 (α-glucosidase) 抑制劑具有有效降低飯後血糖之效果。本實驗以抑制α-葡萄糖苷酶之活性為篩選平台,由十一種中草藥中篩選出具有抑制α-葡萄糖苷酶活性之材料,結果發現五倍子之抑制活性最為顯著,故選用五倍子做進一步的分離純化,希望從中找尋出具有調節血糖功效之活性成分,並期望能由多方面達到調節血糖以及改善糖尿病之效果。 在抑制α-葡萄糖苷酶活性試驗中,五倍子之乙酸乙酯萃取層,具有最高之抑制活性,且在抑制DPP-4酵素、抑制糖化終產物(AGEs)生成以及抑制α-澱粉酶 (α-amylase) 之實驗中,乙酸乙酯萃取層亦具有最佳之活性。進一步以 Sephadex LH-20 膠體將乙酸乙酯萃取物進行管柱層析分離為EA-A ~ EA-I九個區分層,將此九個區分層進行抑制α-葡萄糖苷酶活性試驗,實驗結果發現EA-G 區分層對酵母來源及大鼠來源之α-葡萄糖苷酶抑制性率分別為93.59 % 及42.91 %,與其他區分層相較有最佳之抑制活性。另外EA-G 區分層在清除 DPPH 自由基、抑制糖化終產物(AGEs)生成、抑制α-澱粉酶 (α-amylase) 以及促進小鼠肝細胞FL83B葡萄糖攝入之實驗中亦具有良好之活性。 由上述實驗結果選出 EA-G 區分層做進一步之純化,在經過高效液相層析儀分離純化後,得到之七個區分物G1 ~ G7,當中G4及G5兩個區分物對 α-葡萄糖苷酶之抑制活性分別為97.7 %以及99.93 %,其抑制能力顯著高於 EA-G 之其他區分物。進一步收集此兩區分物做 LC-MS 質譜分析並與文獻比對後,推知此兩個區分物為1,2,3,6-tetra-O-galloyl-β-d-glucose 及 1,2,3,4,6-penta-O-galloyl-β-d-glucose。 綜合以上實驗結果可知,五倍子具有良好之 α-葡萄糖苷酶抑制活性,並推測其主要活性成分為 1,2,3,6-tetra-O-galloyl-β-d-glucose 及 1,2,3,4,6-penta-O-galloyl -β-d-glucose。五倍子除了具有良好之 α-葡萄糖苷酶抑制活性外,尚有 α-澱粉酶抑制活性、DPP-4 抑制活性、清除 DPPH 自由基、抑制 AGEs 形成、刺激細胞吸收葡萄糖等各種生理活性,故五倍子具有由多方面性達到調節血糖之效果,以及發展為抗糖尿病活性產品之潛力。

English Abstract

Diabetes mellitus (DM) is a common metabolism disease worldwide. DM is also on the top five list of the ten major causes of death in Taiwan for many years. Hyperglycemia is the main symptom to the DM patients. It obten inducesvarious complications, and postprandial hyperglycemia is the principal factor of DM complications. Among many kinds of diabetic medicines, only α-glucosidase inhibitors can significantly lower postprandial blood glucose. This research used α-glucosidase inhibition assay to find the plant materials which has ability to inhibit α-glucosidase. It was found that among the eleven plant materials tested, Galla chinensis has the most potent inhibition activity. Therefor, we futher investigated the active component in Galla chinensis usingα-glucosidase inhibition assay. Various solvents were used to prepare Galla chinensis extracts, and ethyl acetate extract (EA) of Galla chinensis was found to have the highest ability to inhibit α-glucosidase, and it’s also had the highest activity in the DPP-4 inhibition assay, advanced glycation end products inhibition assay and α-amylase inhibition assay. We futher used Sephadex LH-20 gel to separate that EA-A ~ EA-I fractions from the Galla chinensis ethyl acetate extract, and found EA-G had the best ability to inhibit α-glucosidase among the nine fractions, the inhibition ratio of yeast α-glucosidase and rat α-glucosidase were 93.59 % and 42.91 %, respectively. The EA-G fraction also had well activity in the DPP-4 inhibition assay, DPPH free radical scavenge assay, advanced glycation end products inhibition assay and α-amylase inhibition assay, and it also increased glucose uptake of insulin resistant cells. According to the above experimental result, the EA-G fraction was futher purified using High Performance Liquid Chromatography and G1~ G7 fractions were obtained. The G4 and G5 fractions were found to have highest α-glucosidase inhibition activity among the seven fractions. These two fractions were futher analyzed by Mass Spectrometry, and found that they are 1, 2, 3, 6-tetra-O-galloyl-β-d-glucose and 1, 2, 3, 4, 6-penta-O-galloyl-β-d-glucose. This research has proved that Galla chinensis not only has high α-glucosidase inhibition activity, but also can inhibit DPP-4, scavenge free radicals, inhibit advanced glycation end products formation, inhibit α-amylase activity, and increase glucose uptake of insulin resistant cells. So, Galla chinensis can modulate blood sugar through various ways and has potential to be developed as an anti-diabetes product.

Topic Category 生物資源暨農學院 > 食品科技研究所
工程學 > 化學工業
Reference
  1. 林煥哲。小本山葡萄及羅氏鹽膚木蟲癭成份之研究。台北醫學大學藥學研究所碩
    連結:
  2. 洪心容。台灣九種治療糖尿病藥用植物之抗氧化及降血糖相關性之研究。中國醫
    連結:
  3. 國中西醫結合實驗醫學學術研討會會議論文集。2002。
    連結:
  4. 張文思。薏苡籽實與荷葉之抗糖基化效應。國立台灣大學食品科技研究所
    連結:
  5. 碩士論文。2008。
    連結:
  6. 黃郁筑。五倍子對第二型糖尿病預防及改善之研究。國立台灣大學食品科
    連結:
  7. 黃慧琪。無患子與五倍子活性成分之研究。高雄醫學大學藥學研究所碩士
    連結:
  8. 篩選。屏東科技大學生物科技研究所碩士論文。2006。
    連結:
  9. Mexican plants used in the treatment of type 2 diabetes. J. Ethnopharmacol. 2008, 116, 27-32.
    連結:
  10. Alembert T.T.; Shamsun, N.K.; Victorine, F. α-Glucosidase inhibitors from Millettia
    連結:
  11. conraui. Chem. Pharm. Bull. 2007, 55, 1402-1403.
    連結:
  12. Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes
    連結:
  13. mellitus and its complications. Part 1: diagnosis and classification of diabetes
    連結:
  14. mellitus provisional report of a WHO consultation. Diabet. Med. 1998, 7, 539-53.
    連結:
  15. (DPP IV) is one of the mechanisms explaining the hypoglycemic effect of berberine. J. Enzyme Inhib. Med. Chem. 2009, 57, 7687-7692.
    連結:
  16. American Diabetes Association: Standards of medical care in diabetes-2008. Diabetes Care. 2008, 1, S12-S54.
    連結:
  17. Amersham biosciences. 2005. http://www.chromatography.amersham biosciences.com.
    連結:
  18. Bennett, S.A.L.; Arnason, J.T. Inhibitory Effect of the Cree Traditional Medicine Wiishichimanaanh (Vaccinium vitis-idaea) on Advanced Glycation Endproduct Formation: Identifi cation of Active Principles. Phytother. 2010, 24, 741–747.
    連結:
  19. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications.
    連結:
  20. Nature. 2001, 6865, 813-820.
    連結:
  21. Pizzolatti, M.G.; Szpoganicz ,B.; Silva, F. R. M.B.Follow-up studies on glycosylated flavonoids and their complexes with vanadium: Their anti-hyperglycemic potential role in diabetes. Chem. Biol. Interact. 2006, 163, 177–191.
    連結:
  22. some Mexican plants used in the treatment of type 2 diabetes. J. Ethnopharmacol. 2008, 116, 27–32.
    連結:
  23. Food and Drug Analysis. 2002, 10, 178-182.
    連結:
  24. I. Pyridoxal-aminoguanidine adduct is more effective than aminoguanidine in
    連結:
  25. Galla Chinensis on the Escherichia coli heat-labile enterotoxin and ganglioside
    連結:
  26. interaction. J. Ethnopharmacol. 2006,103,385–39.
    連結:
  27. Cheng, A.Y.Y.; Fantus, I.G. Oral antihyperglycemic therapy for type 2 diabetes
    連結:
  28. identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase. J. Agric. Food Chem. 2008, 56, 6835-6843.
    連結:
  29. Christopher, H. S.; McIntosh, B. Incretin-based therapies for type 2 diabetes. Can. J.
    連結:
  30. Diabetes. 2008, 32, 131-139.
    連結:
  31. Traditional Chinese Medicines Galla Chinese as inhibitors of HCV NS3 protease.
    連結:
  32. Bioorg Med Chem Lett. 2004, 14, 6041-6044.
    連結:
  33. scavenger capacity of vegetable oils and oil fractions using
    連結:
  34. oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord. 2008,
    連結:
  35. 9, 301-14.
    連結:
  36. fruits of Terminalia chebula Retz. Food Chem. 2007, 105, 628–634.
    連結:
  37. Goh, S.Y.; Cooper, M. E. The role of advanced glycation end products in progression
    連結:
  38. and complications of diabetes. J Clin Endocrinol Metab. 2008, 93, 1143-52.
    連結:
  39. Guowang ; Ningc, G. Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabonomics. Talanta. 2010, 81, 766–772.
    連結:
  40. Palbinone and triterpenes from Moutan Cortex (Paeonia suffruticosa,Paeoniaceae) stimulate glucose uptake and glycogen synthesis via activation of AMPK in insulin-resistant human HepG2 Cells. Bioorganic & Medicinal Chemistry Letters. 2009, 19, 5556–5559.
    連結:
  41. Obayashi, H.; Park, H.; Nakano, K.; Tanaka, M.; Emi, S.; Fukui, M.; Yoshikawa, T.; Nakamura, N. The α-glucosidase inhibitor acarbose reduces the net electronegative charge of low-density lipoprotein in patients with newly diagnosed type 2 diabetes. Clin. Chim. Acta. 2008, 390, 110–114.
    連結:
  42. Hsieh, M. C.; Shen, Y. J.; Kuo, Y. H.; Hwang, L. S. Antioxidative activity and active
    連結:
  43. components of longan (Dimocarpus longan Lour.) flower extracts. J Agric Food
    連結:
  44. Glucose Uptake in Insulin-Resistant Mouse Hepatocytes. J. Agric. Food Chem.
    連結:
  45. 2009, 57, 7687–7692.
    連結:
  46. Inzucchi, S. E. Oral antihyperglycemic therapy for type 2 diabetes. JAMA. 2002, 287,
    連結:
  47. 360-72.
    連結:
  48. M.F. Purification, biochemical characterisation and partial primary structure of a new a-amylase inhibitor from Secale cereale (rye). Int. J. Biochem. Cell Biol. 2000, 32, 1195–1204.
    連結:
  49. Phenol Content in Jackfruit (Artocarpus heterophyllus Lam.) Fruit Pulp. Plant Foods Hum. Nutr. 2010, 65, 99–104.
    連結:
  50. Jakus, V.; Rietbrock, N. Advanced glycation end-products and the progress of
    連結:
  51. Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern Willows: Methods
    連結:
  52. Jung, M.; Park, M.; Lee, H. C.; Kang, Y.H.; Kang, E.S.; Kim, S.K. Antidiabetic Agents
    連結:
  53. from Medicinal Plants. Curr. Med. Chem. 2006, 13, 1203-1218
    連結:
  54. Y. Screening for antioxidant activity in edible plant products: comparison of
    連結:
  55. Folin-Ciocalteu assay. J Agric Food Chem. 2004, 52, 2391-6.
    連結:
  56. Kim J.S.; Kwon C.S.; Son K.H. Inhibition of alpha-glucosidase and amylase by luteolin,
    連結:
  57. a flavonoid. Biosci. Biotechnol. Biochem. 2000, 64, 2458-2461.
    連結:
  58. Kim, Y.M.; Wang, M.H.; Rhee, H. A novel a-glucosidase inhibitor from pine bark.
    連結:
  59. Carbohydr. Res. 2004, 339, 715–717
    連結:
  60. Kimura, T. Development of Mulberry Leaf Product with alpha-Glucosidase Inhibitor for
    連結:
  61. the Prevention of Type2 Diabetes Mellitus. Japan Soc. Food Sci. Technol . 2010, 57, 57-62
    連結:
  62. mechanism of production of reactive oxygen species in mitochondria. FEBS Lett.
    連結:
  63. Laube ,H. AcarboseAn Update of Its Therapeutic Use in Diabetes Treatment. Clin.
    連結:
  64. Drug Invet. 2002, 22, 141-156
    連結:
  65. inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. J. Sci. Food Agri.c. 2009, 89, 1552–1558.
    連結:
  66. by berberine - a potential anticancer drug. Biologia. 2005, 60, 97-100.
    連結:
  67. polysaccharide from Portulaca oleracea L. Afr. J. Biotechnol. 2009, 8, 569-573.
    連結:
  68. Liu, T. Z.; Chen, C. Y.;Yiin S. J.;Chen C. H.;Cheng J. T.; Shih, M. K.;Wang, Y. S.;
    連結:
  69. Kendall, P. Total phenolic content and DPPHd radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT. 2007, 40, 552–557.
    連結:
  70. insulin sensitivity in KKAy mice: Regulation of PKB/GLUT4 signaling in skeletal muscle. J. Ethnopharmacol. 2010, 127, 32–37.
    連結:
  71. Yub, L.; Kendalla, P.Total phenolic content and DPPHd radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT. 2007, 40, 552–557.
    連結:
  72. Responses Through AMP-Activated Protein Kinase Activation in BV-2 Microglia
    連結:
  73. J. Cell. Biochem. 2010, 110, 697–705.
    連結:
  74. KURILA, P.; VAŠKO, L.; RÁCZ, O.; NIŠTIAR, F. Preventive Effects of Flavonoids on Alloxan-Induced Diabetes Mellitus in Rats. ACTA. VET. BRNO. 2008, 77, 175-182.
    連結:
  75. anti-oxidative and a-glucosidase inhibitory activities of Cynomorium songaricum. Food Chem. 2010, 118, 116–119.
    連結:
  76. antioxidant activities of Vietnamese edible plants and their relationships with
    連結:
  77. polyphenol contents. J. Nutr. Sci. Vitaminol. 2007, 53, 267-76.
    連結:
  78. M. Screening system for the maillard reaction inhibitors from natural product
    連結:
  79. extract. J. Health Sci. 2002, 48, 520–526.
    連結:
  80. Kawasaki, M.; Takemura,G.; Fujiwara T.; Fujiwara, H. A novel anti-diabetic drug, miglitol, markedly reduces myocardialinfarct size in rabbits. Br. J. Pharmacol. 1999, 128, 1667-1672.
    連結:
  81. Determination of a-amylase inhibitor activity of phaseolamin from kidney bean (Phaseolus vulgaris) in dietary supplements by HPAEC-PAD. Anal. Chim. Acta. 2008, 617, 192-195.
    連結:
  82. of green tea against free radical- and glucose-mediated protein damage. J Agric
    連結:
  83. Normalizingmitochondrial superoxide production blocks three pathways of
    連結:
  84. Y.;Shirai, K. Effect of Acarbose,an Alpha-Glucosidase Inhibitor on Serum Lipoprotein Lipase Mass Levels and Common Carotid Artery Intima-Media Thickness in Type2 Diabetes Mellitus Treated by Sulfonylurea. Eksp. Klin. Farmakol. 2008, 15, 154-159.
    連結:
  85. activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresour. Technol. 2010, 101, 4676-4689.
    連結:
  86. M. New furanoflavanoids, intestinal a-glucosidase inhibitory and free-radical (DPPH) scavenging, activity from antihyperglycemic root extract of Derris indica (Lam.). Bioorg. Med. Chem. 2009, 17, 5170–5175.
    連結:
  87. Reddy, V. P.; Beyaz, A. Inhibitors of the Maillard reaction and AGE breakers as
    連結:
  88. Rosenthal, J.; Mauersberger, H. Effects on blood pressure of the alpha-glucosidase
    連結:
  89. inhibitor acarbose compared with the insulin enhancer glibenclamide in patients with hypertension and type 2 diabetes mellitus. Clin. Drug. Investig. 2002, 22, 695-701.
    連結:
  90. Free radical-scavenging activity of Korean red ginseng for erectile dysfunction in non-insulin-dependent diabetes mellitus rats. Urology. 2005, 65, 611-615.
    連結:
  91. Dehydrotrametenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulin-dependent diabetes mellitus to insulin. Biol. Pharm. Bull. 2002, 25, 81-86.
    連結:
  92. Schalkwijk, C. G.; Stehouwer, C. D. Vascular complications in diabetes mellitus: the
    連結:
  93. role of endothelial dysfunction. Clin Sci. 2005, 109, 143-59.
    連結:
  94. Diabetes Mellitus. Drugs. 2000, 59, 521-549.
    連結:
  95. counter-current chromatography for separation and purification of lignans from
    連結:
  96. 2003, 85, 283–287.
    連結:
  97. Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: a review.
    連結:
  98. Diabetologia. 2001, 2, 129-146.
    連結:
  99. Masanori, K.; Genzou, T.; Takako, F.; Hisayoshi, F. A novel anti-diabetic drug, miglitol, markedly reduces myocardial infarct size in rabbits. Br. J. Pharmacol. 1999, 128, 1667 -1672
    連結:
  100. Stumvoll, M.; Goldstein, B. J.; van Haeften, T. W. Type 2 diabetes: principles of
    連結:
  101. pathogenesis and therapy. Lancet. 2005, 9467, 1333-46.
    連結:
  102. flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149-153.
    連結:
  103. antimicrobial activities of consecutive extracts from Galla chinensis: the polarity
    連結:
  104. Toda, M.; Kawabata, J.; Kasai, T. Inhibitory effects of ellagi- and gallotannins on rat
    連結:
  105. intestinal alpha-glucosidase complexes. Biosci. Biotechnol. Biochem. 2001, 65, 542-547.
    連結:
  106. Triplitt, C.L. New technologies and therapies in the management of diabetes. Am J
    連結:
  107. extracts on formation of advanced glycation end products. Food chemistry. 2009,
    連結:
  108. Hoshiko, M.; Yoshiyama, Y.; Takeuchi, M.; Ueda, S.; Yamagishi, S. An alpha-glucosidase inhibitor, acarbose treatment decreases serum levels of glyceraldehyde-derived advanced glycation end products (AGEs) in patients with type 2 diabetes. Clin. Exp. Med. 2010, 10, 139-141.
    連結:
  109. Van de Laar, F. A.; Lucassen, P. L.; Akkermans, R. P.; van de Lisdonk, E. H.; Rutten,
    連結:
  110. G. E.; van Weel C. Alpha-glucosidase inhibitors for patients with type 2 diabetes.
    連結:
  111. Diabetes Care. 2005, 28, 154-63.
    連結:
  112. Wang, H.; Dub, Y.J.;Song, H.C. a-Glucosidase and a-amylase inhibitory activities of
    連結:
  113. guava leaves. Food Chem.2010, 123, 6–13.
    連結:
  114. Wautier, J. L.; Guillausseau, P. J. Advanced glycation end products, their receptors
    連結:
  115. changes in glucose synthesis, intracellular glutathione status and hydroxyl free radical generation in rabbit kidney-cortex tubules. Mol. Cell. Biochem. 2004, 261, 91-98.
    連結:
  116. Wu, C. H.; Yen, G. C. Inhibitory effect of naturally occurring flavonoids on the
    連結:
  117. formation of advanced glycation endproducts. J. Agric. Food Chem. 2005, 53,
    連結:
  118. on the Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrum of Chinese Gallotannins. J. Appl. Polym. Sci. Symp. 2007, 105, 859–864.
    連結:
  119. Xie, Q.; Li, J.; Zhou, X. Anticaries effect of compounds extracted from Galla Chinensis
    連結:
  120. in a multispecies biofilm model. Oral Microbiol. Immunol.. 2008, 23, 459–465.
    連結:
  121. partial characterization of a glycoprotein alpha-amylase inhibitor from white kidney bean (Phaseolus vulgaris. L). J. Food Biochem. 2008, 32, 72-84.
    連結:
  122. Zhang, H.; Wei, J.; Xue, R.; Wu, J. D.; Zhao, W.; Wang, Z. Z.; Wang, S. K.; Zhou, Z.X.;
    連結:
  123. Song, D.Q.; Wang, Y.M.; Pan, H.N.; Kong, W.J.; Jiang, J. D.
    連結:
  124. Zhong, S.; Wu, Y.; SOO-MI, A.; Zhao, J.; Wang, K.; Yang, S.; Jae-Ho, Y.; Zhu, X.
    連結:
  125. Depigmentation of melanocytes by the treatment of extracts from Traditional
    連結:
  126. iminosugar inhibitor-glycosidase complex: insight into the binding mechanism of 1-Deoxynojirimycin and isofagomine toward â-Glucosidase.J. Chem. Theory Comput. 2006, 2, 157-165.
    連結:
  127. gallotannins from Chinese galls by matrix-assisted laser desorption/ionization time-of-flight quadrupole ion trap mass spectrometry.Rapid Commun. Mass Spectrom., 2009, 23, 1678–1682.
    連結:
  128. 止戈。治療中草藥。五州出版社。台北,2001,p 1-5。
  129. 于瑞華、蘭勝才、唐翠敏。復方五倍子粉治療褥瘡的效果。齊魯醫學雜誌。
  130. 山東,1999,p 30。
  131. 朴春梅。五倍子的研究近況。中國民間療法。2005,13:63-65。
  132. 行政院衛生署。行政院衛生署衛生統計資訊網。2009。http://www.doh.gov.tw.
  133. 艾東方。中成藥治療糖尿病足的應用概況。時珍國醫國藥。2007,18:
  134. 224-225。
  135. 呂俠卿。中藥鑑別大全。中華人民共和國湖南科學技術出版社。湖南。2002。
  136. 李時珍著; 劉衡如、劉山永校著。。本草綱目。華夏出版社。北京,2002,
  137. p1494-1498。
  138. 沈忠明、李英、姜宏、殷建偉、許兆龍。降糖中藥對α-葡萄糖苷酶抑制作用的研究。
  139. 中國生化藥物雜誌。 2000,21,69-70。
  140. 士論文。1997。
  141. 藥大學藥學院中國藥學研究所博士論文。2007。
  142. 楊奎、唐燦。五倍子油對實驗性肥胖及糖尿病大鼠胰島素抵抗的影響。第六次全
  143. 張芳榮。台灣市售五倍子之指紋圖分析與活性成分之研究。衛生署中醫藥
  144. 委員會整合型計劃。2006。
  145. 張琳,趙宏義,陳祖輝,穆家玲,夏映雪,張興華,王長嶺 。糖尿病的活血化瘀
  146. 療法。中華現代中西醫雜誌。2002。
  147. 陳坤鍾。五倍子化學成份及其生物活性之研究。國立清華大學生命科學研
  148. 究所碩士論文。2004。
  149. 技研究所碩士論文。2009。
  150. 論文。2005。
  151. 黃新凱。小鼠細胞胰島素抗性之誘導及其應用於葫蘆科植物降血糖成分之
  152. 劉毓蕙。後期糖化終產物與活性氧在糖尿病併發症中的角色。食品工業,2008,
  153. 40:27-35。
  154. Adolfo A.C.; Jaime, B.J.; René, C.V. Alfa-glucosidase-inhibiting activity of some
  155. Al-masri, I.M.;Mohammad, M.K.; Tahaa, M.O. Inhibition of dipeptidyl peptidase IV
  156. Apostolidis, E.;Lee, C. M. In Vitro Potential of Ascophyllum nodosum Phenolic
  157. Antioxidant-Mediated alpha-Glucosidase and alpha-Amylase Inhibition. J. Food Sci. 2010, 75, H97-H102.
  158. Beaulieu, L.P.; Harris, C.S.; Saleem, A.; Cuerrier, A. ; Haddad, P.S. ; Martineau, L.C.;
  159. Bobyreva, L.E. The effect of phenol antioxidants on the development of alloxan
  160. diabetes in rats. Eksp. Klin. Farmakol.1997, 60, 51-53.
  161. Cazarolli , L. H.; Zanatta, L.; Jorge, A. P.; Sousa, E.; Horst , H.; Woehl, V.M.;
  162. Cetto, A.A.; Jim´enez ,J.B.; V´azquez, R.C. Alfa-glucosidase-inhibiting activity of
  163. Chang, C.C.; Yang, M. H.; Wen, H. M.; Chern, J. C. Estimation of total flavonoid
  164. content in propolis by two complementary colorimetric methods. Journal of
  165. Chen, A.S.; Taguchi, T.; Sugiura, M.; Wakasugi, Y.; Kamei, A.; Wang, M.W.; Miwa,
  166. preventing neuropathy and cataract in diabetic rats. Horm. Metab. Res.. 2004, 3,
  167. 183-187.
  168. Chen, J.C.; Ho, T.Y.; Chang, Y.S.; Wu, S. L.; Hsiang, C. Y. Anti-diarrheal effect of
  169. mellitus. CMAJ. 2005, 172, 213–226.
  170. Cheng, H.L.; Huang, H.K.; Chang, C.I.; Tsai, C.P.; Chou, C.H. A cell-based screening
  171. Duan, D.; Li, Z.; Luo, H.; Zhang, W.; Chen, L.; Xu, X. Antiviral compounds from
  172. Espín, J. C.; Soler-Rivas, C.; Wichers, H. J. Characterization of the total free radical
  173. 2,2-diphenyl-1-picrylhydrazyl radical. J Agric Food Chem. 2000, 48, 648-56.
  174. Figureueroa-Romero, C.; Sadidi, M.; Feldman, E. L. Mechanisms of disease: The
  175. Gao, H.; Huang, Y.N.; Xu, P.Y.; Kawabata, J. Inhibitory effect on a-glucosidase by the
  176. Göke, B.; Herrmann, C.; Göke, R. Intestinal effects of alphaglucosidase inhibitors:
  177. absorption of nutrients and enterohormonal changes. Eur. J. Clin. Invest. 1994, 24 , 25-30.
  178. Gua, Yan; Zhangc, Y.; Shib, X.; Li c, X.; Hongc, J.; Chenb, J.; Guc,W.; Lub, Xin; Xub,
  179. Ha, D.T.; Tuan, D.T.; Thu, N.B.; Nhiem, N.X.; Ngoc, T.M.; Yim, N.H.; Bae, K.H.;
  180. Hasegawa, G.; Kajiyama, S.; Tanaka, T.; Imai, S.; Kozai, H.; Fujinami, A.; Ohta, M.;
  181. Chem. 2008, 56, 7010-6.
  182. Huang D.W.; Shen, S.C.; Wu, J.S.B. Effects of Caffeic Acid and Cinnamic Acid on
  183. Iulek,J. ; Luiz,O.F.; Silva, M.; Slivinski , C. T.; Jr, C. B.; Rigden ,D.J.; Grossi de Sa,
  184. Jagtap, U.B.; Panaskar , S.N. ; Bapat , V. A. Evaluation of Antioxidant Capacity and
  185. diabetic vascular complications. Physiol Res. 2004, 53, 131-142.
  186. for the analysis of certain phenolics. J. Agric. Food Ckem. 1985, 33, 213-217.
  187. Karthic, K.; Kirthiram, K. S.; Sadasivam, S.; Thayumanavan, B.; Palvannan, T.
  188. Identification of alpha amylase inhibitors from Syzygium cumini Linn seeds. Indian J. Exp. Biol. 2008, 46, 677-680.
  189. Katsube, T.; Tabata, H.; Ohta, Y.;Yamasaki, Y.; Anuurad, E.; Shiwaku, K.; Yamane,
  190. low-density lipoprotein oxidation assay, DPPH radical scavenging assay, and
  191. Korshunov, S. S.; Skulachev, V. P.; Starkov, A. A. High protonic potential actuates a
  192. 1997, 416, 15-8.
  193. Lee,S.H.; Li , Y.; Karadeniz, F.; Kim, M. M.; Kim,S.K.α-Glucosidase and α-amylase
  194. Letasiova, S.; Jantova, S.; Horvathova, M.; Lakatos, B. Toxicity and apoptosis induced
  195. Li, F.; Li, Q.; Gao, D.; Peng, Y.; Feng, C. Preparation and antidiabetic activity of
  196. Chern, C. L. Molecular mechanism of cell cycle blockage of hepatoma
  197. SK-Hep-1 cells by Epimedin C through suppression of mitogen-activated protein
  198. kinase activation and increased expression of CDK inhibitors p21Cip1 and p27Kip1.Food and Chemical Toxicology. 2006, 44, 227–235.
  199. Liu, X.; Ardo, S.; Bunning, M.; J Parry, J.; Zhou, K.; Stushnoff, C.; Stoniker, F.; Yu, L.;
  200. Liu, M.; Wu, K.;Mao X.; Wu, Y.; Ouyang, J. Astragalus polysaccharide improves
  201. Liua, X.; Ardob, S.; Bunninga, M.; Parryb, J.; Zhoub, K.; Stushnoffc, C.; Stonikerc, F.;
  202. Lu,D.Y.; Tang,C.-H.; Chen,Y.H.;Wei,I.H. Berberine Suppresses Neuroinflammatory
  203. LUKAČÍNOVÁ, A.; MOJŽIŠ, J.; BEŇAČKA, R.; KELLER, J.; MAGUTH, T.;
  204. Ma, C.M.; Sato, N.; Li, X.Y.; Nakamura, N.; Hattori, M. Flavan-3-ol contents,
  205. Mai, T. T.; Thu, N. N.; Tien, P. G.; Van Chuyen, N. Alpha-glucosidase inhibitory and
  206. Matsuura, N.; Aradate, T.; Sasaki, C.; Kojima, H.; Ohara, M.; Hasegawa, J.; Ubukata,
  207. Minatoguchi, S.; Arai, Masazumi; Uno, Y.; Kariya, T.; Nishida, Y.; Hashimoto, K.;
  208. Mosca, M.; Boniglia, C. ; Carratu, B.; Giammarioli, S.;Nera, V.;Sanzini, E.
  209. Nakagawa, T.; Yokozawa, T.; Terasawa, K.; Shu, S.; Juneja, L. R. Protective activity
  210. Food Chem. 2002, 50, 2418-22.
  211. Nishikawa, T.; Edelstein, D.; Du, X. L.; Yamagishi, S.; Matsumura, T.; Kaneda, Y.;
  212. Yorek, M. A.; Beebe, D.; Oates, P. J.; Hammes H, P.; Giardino, I.; Brownlee, M.
  213. hyperglycaemic damage. Nature. 2000; 6779, 787-790.
  214. Oldfield, M. D.; Bach, L. A.; Forbes, J. M.; Nikolic-Paterson, D.; McRobert, A.;
  215. Thallas, V.; Atkins, R.C.; Osicka, T.; Jerums, G.; Cooper, M. E. Advanced
  216. glycation end products cause epithelialmyofibroblast transdifferentiation via the
  217. receptor for advanced glycation end products. J Clin Invest. 2001, 108, 1853-1863.
  218. Oyama, T.;Saiki, A.;Endoh, K.;Ban, N.;Nagayama, D.;Ohhira, M.;Koide, N.;Miyashita,
  219. Pu, X.F.; YANG, K.;Hou S.X. Pharmacological screening of hypoglycemic fractions
  220. from Chinese gall. Zhongguo Yao Xue Za Zhi. 2005, 40, 1470-1472.
  221. Ranilla, L.; Kwon, Y. I.; Apostolidis, E.; Shetty, K. Phenolic compounds, antioxidant
  222. Rao, R.R.; Tiwari, A.K.; Reddy, P.P.; Babu, K.S.; Ali, Z. A.; Madhusudana, K.; Rao, J.
  223. therapeutics for multiple diseases. Drug Discov Today. 2006, 11, 646-54.
  224. Rosenthal, J., Mauersberger, H. Hypertension in type 2 diabetic patients -effects of
  225. endogenous insulin and antidiabetic therapies. Am. J. Hypertens. 2000, 13, 81A
  226. Ryu, J.K.; Lee, T.; Kim, D.J.; Park, I.S.; Yoon, S.M.; Lee, H.S.; Song, S.U.; Suh, J.K.
  227. Sato, M.; Tai, T.; Nunoura, Y.; Yajima, Y.; Kawashima, S.; Tanaka, K.
  228. Scott, L. J.; Spencer, C.M. Miglitol a review of its therapeutic potential in Type 2
  229. Shen, S.C.; Cheng , F.C.; Wu , N.J. Effect of Guava (Psidium guajava Linn.) Leaf
  230. Soluble Solids on Glucose Metabolism in Type 2 Diabetic Rats. Phytother. Res. 2008, 22, 1458–1464.
  231. Shi, S.; Zhang, Y.; Huang, K.; Liu, S.; Zhao, Y. Application of preparative high-speed
  232. Taraxacum mongolicum. Food Chemistry. 2008, 108, 402–406.
  233. Shim, Y. J.; Doo, H. K.; Ahnb, S. Y.; Kim, Y. S.; Seong, J. K.; Park, I. S.; Min, B. H.
  234. Inhibitory effect of aqueous extract from the gall of Rhus chinensis on
  235. alpha-glucosidase activity and postprandial blood glucose. J Ethnopharmacol.
  236. Shinozaki, K.; Suzuki, M.; Ikebuchi, M. Improvement of insulin sensitivity and
  237. dyslipidemia with a new alphaglucosidase inhibitor in non-diabetic hyperinsulinemic subjects. Metabolism. 1996, 45, 731-737.
  238. Shinya, M.; Masazumi, A.; Yoshihiro, U.; Tatsuya, K.; Yoshio, N.; Kazuaki, H.;
  239. Tadera, K.; Minami, Y.; Takamatsu, K. Inhibition of α-glucosidase and α-amylase by
  240. Tian, F.;Li, B.;Ji, B.; Zhang, G.; Luo, Y. Identification and structure–activity relationship
  241. of gallotannins separated from Galla chinensis. LWT - Food Science and
  242. Technology. 2009, 42, 1289-1295 .
  243. Tian, F.; Li, B.; Ji, B.; Yang, J.; Zhang, G.; Chen, Y.; Luo, Y. Antioxidant and
  244. affects the bioactivities. Food Chemistry. 2008, 113, 173-179.
  245. Manag Care. 2007, 2, 47-54.
  246. Tsuji-Naito, K.; Saeki, H.; Hamano, M. Inhibitory effects of Chrysanthemum species
  247. 116, 854-859.
  248. Tsunosue, M.; Mashiko, N.; Ohta, Y.; Matsuo, Y.; Ueda, K.; Ninomiya, M.; Tanaka, S.;
  249. and diabetic angiopathy. Diabetes Metab. 2001, 27, 535-542.
  250. Winiarska, K.; Drozak, J.; Wegrzynowicz, M.; Fraczyk, T.; Bryla, J. Diabetes-induced
  251. 3167-3173.
  252. Xiang, P.; Lin, Y.; Lin, P.; Xiang, C.; Yang, Z.;Lu, Z. Effect of Cationization Reagents
  253. Yang, M. Y.; Zhang, X. Q.;Ma, Y.;Shen, J.;Song, J. R.;Zhu, H. L. Purification and
  254. Ye,F. ; Shen, Z.; Xie,M. Alpha-glucosidase inhibition from a Chinese medical herb
  255. (Ramulus mori) in normal and diabetic rats and mice. Phytomedicine. 2002, 9,
  256. 161–166.
  257. Zettl, H.; Schubert-Zsilavecz, M.; Steinhilber, D. Medicinal Chemistry of Incretin
  258. Mimetics and DPP-4 Inhibitors. Chem. Med. Chem. 2010, 5, 179 – 185.
  259. Chinese Herbs: a cell culture assay. Biol. Pharm. Bull. 2006, 9, 1947—1951.
  260. Zhou, J.M.; Zhou, J.H.; Meng, Y.; Chen, M.B.Molecular dynamics simulation of
  261. Zhu, F.; Cai, Y.Z.; Xing, J.; Ke, J.; Zhan, Z.; Corke, H. Rapid identification of
Times Cited
  1. 黃子軒(2016)。高粱酒糟萃取液之製備及其有機酸成分與胞外生物活性之評估。中興大學食品暨應用生物科技學系所學位論文。2016。1-127。