Title

氧化鐵磁性奈米粒子表面修飾及其在生物辨識系統上之應用

Translated Titles

Surface Modification of Ferrite Magnetic Nanoparticles and Application to Biomolecular Recognition

DOI

10.6342/NTU.2004.00913

Authors

周子琪

Key Words

磁性 ; 奈米 ; 生物辨識 ; nano ; magnetic ; biomolecule recognition

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2004年

Academic Degree Category

碩士

Advisor

方俊民

Content Language

繁體中文

Chinese Abstract

本篇論文主要是利用磁性奈米粒子來與生物分子結合,希望藉由生物分子的專一辨識性,加上利用磁性來達到分離純化的效果。 如下圖所示,我們將其分為三個部份,一是四氧化三鐵磁性奈米粒子,其上包覆有聚丙烯酸來避免四氧化三鐵的氧化且使奈米粒子能均勻的溶於水中,並藉由羧酸這個官能基,將連接鏈接到奈米粒子上;連接鏈的設計方面,由於需考慮水溶性來配合生物分子,故採用水溶性佳的乙二醇為架構;在連接鏈末端,留了一個雙硫吡啶來與生物分子上的硫醇做交換,而將生物分子以雙硫鍵接上磁性奈米粒子,交換後所得到的2-吡啶硫酮也可利用其含UV吸收的特性,來反定量接上生物分子的多寡;這裡使用的生物分子是禽流感H6型的病毒與抗體,並利用血球凝集試驗來證明病毒存在與否。

English Abstract

In this thesis, we describe the preparation of magnetic nanoparticles linked with biomolecules, such as antibody, for specific recognition and easy separation of the target receptors, such as virus, and purified them. As shown in the figure, three parts are connected. The first part is ferrite magnetic nanoparticles (NPs) which were covered with poly (acrylic acid) to prevent oxidation and to increase solubility in water. These acid groups are connected with the ethylene glycol type linkers with good water solubility. At the end of the linker, there is a dithiolpyridine moiety which can form a disulfide bond with the thiol groups on biomolecules. In the mean time of this sulfide exchange, 2-thiolpyridone is released and detected by UV absorption. This method is used to quantify the amount of attacked biomolecules. The biomolecules in my study include H6 avian influenza virus (AI virus) and its antibody. In the first approach, the virus is directly attacked on NPs. Alternatively, the virus-specific antibody is first attacked to the NPs, and then used to detect AI virus. Hemagglutination test is used to detect if there’s virus or not in the test sample.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. 2. Niemeyer, C. M. Angew. Chem. Int. Engl. 2001, 40,
    連結:
  2. 3. Lee, Y. C.; Lee, R. T. Acc. Chem. Res. 1995, 28,321−327.
    連結:
  3. 4. Lundquist, J. J.; Toone, E. J. Chem. Rev. 2002, 102,
    連結:
  4. 555−578.
    連結:
  5. 5. Penades, S. Angew. Chem. Int. Engl. 2001, 40, 2257−2261.
    連結:
  6. 6. Lin, C. C.; Yeh, Y. C.; Yang, C. Y.; Chen, C. L.; Chen,
    連結:
  7. G. F.; Chen,C. C.; Wu, Y. C. J. Am. Chem. Soc. 2002,
    連結:
  8. Lett. 2004,4, 995−998.
    連結:
  9. 13. Gu, H.; Ho, P. L.; Tsang, K. W. T.; Wang, L.; Xu, B. J.
    連結:
  10. Am. Chem.Soc. 2003, 125, 15702−15703.
    連結:
  11. Zhang, X.;Xu, B J. Am. Chem. Soc. 2004, 126, 3392−3393.
    連結:
  12. M.; Wang, S.X.; Li, G. J. Am. Chem. Soc. 2004, 126,
    連結:
  13. 273−279.
    連結:
  14. 16. Liao, M.-H.; Chen, D.-H. J. Mater. Chem. 2002, 12,
    連結:
  15. Weissleder, R. J. Am. Chem. Soc. 2003, 125,10192−10193.
    連結:
  16. 1391−1393.
    連結:
  17. 301, 1884−1886.
    連結:
  18. Lett. 2004,4, 409−413.
    連結:
  19. 2004, 126,5664−5665.
    連結:
  20. Wong, C.-H. J. Am.Chem. Soc. 2002, 124, 14397−14402.
    連結:
  21. 1985, 50,2601−2603.
    連結:
  22. 28. Hamachi, I.; Nagase, T.; Shinkai, S. J. Am. Chem. Soc.
    連結:
  23. 2000, 122,12065−12066.
    連結:
  24. R.; Tremel, W.J. Mater. Chem. 1999, 9, 1121−1125.
    連結:
  25. Liedberg, B.;Svensson, S. C. T. J. Org. Chem. 2001,66.
    連結:
  26. 4494−4503.
    連結:
  27. Wong, C.-H. J. Am. Chem. Soc. 2002, 124, 14397−14402.
    連結:
  28. 33. Zaloom, J.; Calandra, M. J. Org. Chem. 1985, 50,
    連結:
  29. 2601−2603.
    連結:
  30. 36. Ravindranathan, K. P.; Field, Robert A. Tetrahedron,
    連結:
  31. 1997, 11753−11766.
    連結:
  32. 37. Lemieux, R. U. Methods in Carbohydrate Chemistry II,
    連結:
  33. 38. Bozo, E.; Boros, S.; Kuszmann, J. Carbohyd. Res. 2000,
    連結:
  34. K.-U.; Smith, A.L. J. Am. Chem. Soc. 1993, 115,
    連結:
  35. 7625−7635.
    連結:
  36. 1. 川合知二,工研院技術研究所,圖解奈米科技。
  37. 4128−4158.
  38. 124, 3508−3509.
  39. 7. Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.;
  40. Alivisatos, A. P.Scince 1998, 281, 2013−2016.
  41. 8. Chan, W. C. W.; Nie, S. Scince 1998, 281, 2016−2018.
  42. 9. A. Robinson,台大化學所博士論文,2003.
  43. 10. Lee, H.; Purdon, A. M.; Chu, V.; Westervelt, R. M. Nano
  44. 11. Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser,A.
  45. Scince 2000,287, 1989−1992.
  46. 12. Elkins, K. E.; Vedantam, T. S.; Liu, J. P.; Zeng, H.;
  47. Sun, S.; Ding, Y.;Wang, Z. L. Nano Lett. 2003, 3,
  48. 1647−1649.
  49. 14. Xu, C.; Xu, K.; Gu, H.; Zhong, X.; Guo, Z.; Zheng, R.;
  50. 15. Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P.
  51. 3654−3659.
  52. 17. Liao, M.-H.; Chen, D.-H. J. Molecular Catalysis B:
  53. Enzymatic. 2002,16, 283−291.
  54. 18. Perez, J. M.; Simeone, F. J.; Saeki, Y.; Josephson, L.;
  55. 19. Li, Z.; Chen, H.; Bao, H.; Gao, M. Chem. Mater. 2004, 9,
  56. 20. Robert, F. Scince 2003, 301, 1827.
  57. 21. Nam, J.-M.; Thaxton, C. S.; Mirkin, C. A. Scince 2003,
  58. 22. Wang, D.; He, J.; Rosenzweig, N.; Rosenzweig, Z. Nano
  59. 23. Gu, H.; Zheng, R.; Zhang, X.; Xu, B. J. Am. Chem. Soc.
  60. 24. 王金和,家禽世界現代畜殖合訂本,九八年,十期,p.11−16。
  61. 25. Fazio, F.; Bryan, M. C.; Blixt, O.; Paulson, J. C.;
  62. 26. Zaloom, J.; Calandra, M.; Roberts, D. C. J. Org. Chem.
  63. 27. Wang, Q.; Raja, K. S.; Janda, K. D.; Lin, T.; Finn, M.
  64. G.Bioconjugate Chem. 2003, 14, 38−43.
  65. 29. Biacore 網址:http://www.biacore.com/home.lasso.
  66. 30. Bartz, M.; Kuther, J.; Nelles, G.; Weber, N.; Seshadri,
  67. 31. Svedhem, S.; Hollander, C.-A.; Shi, J.; Konradsson, P.;
  68. 32. Fazio, F.; Bryan, M. C.; Blixt, O.; Paulson, J. C.;
  69. 34. Bozo, E.; Boros, S.; Kuszmann, J. Carbohyd. Res. 2000,
  70. 329, 25−40.
  71. 35. 國立台灣大學凝態研究中心,王立義副研究員,李曉燕博士班研
  72. 究生。
  73. Academic Press Inc, 1963, 2, 221.
  74. 329, 25−40.
  75. 39. Nicolaou, K. C.; Hummel, C. W.; Nakada, M.; Shibayama,
  76. K.;Pitsinos, E. N.; Saimoto, Y.; Mizuno, Y.; Baldenius,
Times Cited
  1. 李育融(2010)。以紅血球作為藥物包裝與釋放系統的研究。淡江大學化學學系碩士班學位論文。2010。1-129。 
  2. 周子琪(2008)。奈米科技於禽流感病毒偵測上的應用。臺灣大學化學研究所學位論文。2008。1-97。