Translated Titles

Vector Wideband Indoor Channel Modeling and its Applications to WLAN and Multiple Antenna Elements Systems





Key Words

室內通道模型 ; 多輸入多輪出 ; 波束型成 ; 空間多工 ; indoor channel model ; MIMO ; beamforming ; spatial multiplexing



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

在本論文,我們提出了一個可應用於多天線系統的室內向量寬頻通道模型。本通道模型是根據Saleh-Valenzuela的通道模型而來並且由 、 及 這三個參數來描述。 是直接波與線性廻歸線(斜率為 )截點的差值、 為線性廻歸線的斜率、 為射線的平均抵達頻率。我們同時提出並驗證一個萃取這些通道參數的方法。然後我們利用此一通道模型來探討當多天線系統使用切換式波束形成(switch beamforming)或空間多工 (spatial multiplexing) 技術時,對於不同的通道參數所表現出的通道特性及傳輸效能。   切換式波束形成技術可以降低最小所需的訊號雜訊比(minimum required SNR),即使直接波被完全阻擋。我們發現當 越大、線性廻歸線的斜率越陡或射線的平均抵達頻率越小時,最小所需的訊號雜訊比將越小。然而,使用空間多工技術則會有相反的結果-環境的多路徑波成份越多,所需的訊號雜訊比越小。此外,當環境的多路徑波成份貧乏時,使用空間多工技術系統的傳輸效能可能會比單一輸出單一輸入(SISO)的系統差。

English Abstract

In this thesis we propose a vector wideband indoor channel model which can be employed by systems with closely spaced multiple antenna elements. This channel model is based on the single cluster Saleh-Valenzuela (S-V) model and described by the parameter set { , , } which are respectively the amplitude difference of the direct path and the start point of the multipath regression line, the slope of the regression line, and the mean arrival rate. The procedure to extract the channel parameters is also proposed and verified. Then, we use this channel model to discuss the channel characteristics and transmission performance of multi-antenna systems employing switch beamforming or spatial multiplexing for different channel parameters. The switch beamforming technique can reduce the minimum required signal to noise ratio (SNR) even though the direct path is almost blocked. We found that the minimum required SNR is smaller when the is getting greater, the slope of the regression line is getting larger, and the mean arrival rate is getting smaller. However, the spatial multiplexing technique has the opposite result, i.e. the richer the multipath components, the smaller the SNR. In addition, when the environment has poor multipath components, the transmission performance of systems employing spatial multiplexing may be worse than that of single-input single-output (SISO) systems.

Topic Category 電機資訊學院 > 電信工程學研究所
工程學 > 電機工程
  1. [1] T. S. Rappaport, Wireless Communications: Principles and Practices, Practice Hall, 2nd edition, 2002.
  2. [2] S. R. Saunders, Antennas and Propagation for Wireless Communication Systems, John Willy & Sons, 1999.
  3. [3] P. Smulders, “Exploiting the 60 GHz Band for Local Wireless Multimedia Access: Prospects and Future Directions”, IEEE Communication Magazine, vol. 40, pp.140-147, Jan.2002.
  4. [4] R. V. Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000.
  5. [6] Local and Metropolitan Area Networks-Part 16, Air interface for Fixed Broadband Wireless Access Systems, IEEE Standard IEEE 802.16a.
  6. [7] L. C. Godara, Smart Antenna, CRC press, 2004.
  7. [8] G. J. Foschini and M. J. Gans, “On Limits of Wireless Communication in a Fading Environment When Using Multiple Antennas”, Wireless Personal Communications, vol. 6, Mar. 1998, pp. 311-335.
  8. [9] D. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans. Comm., vol. 48, Mar. 2000, pp.502-513.
  9. [10] A. A. M. Saleh and R. A. Valenzuela, “A Statistical Model for Indoor Multipath Propagation,” IEEE J. Sel. Areas Comm., vol. SAC-5, Frb. 1987, pp.128-137.
  10. [11] J. Kunisch, E. Zollinger, J. Pamp and A. Winkelmamn, “MEDIAN 60 GHz Wideband Indoor Radio Channel Measurements and Model,” Proc. VTC 1999, pp. 2393-2397.
  11. [13] Q. H. Spencer, B. D. Jeffs, M. A. Jensen and A. L. Swindlehurst, “Modeling the Statistical Time and Angle of Arrival Characteristics of an Indoor Multipath Channel,” IEEE J. Sel. Areas Comm., vol. 18, Mar. 2000, pp.347-359.
  12. [17] H. Moody, “The Systematic Design of the Butler Matrix,” IEEE Trans. Antennas and Propagation, vol. 12, Nov. 1964, pp.786-788.
  13. [19] A. Paulraj, R. Nabar and D. Gore, Introduction to Space-Time Wireless Communications, Cambridge University Press, 2003.
  14. [20] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: an Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel,” in Proc. URSI Int. Symp. Signals, Ayst., Electron., Sep.1998, pp. 295-300.
  15. [21] IEEE 802.11-04/891, “TGn Sync Proposal Technical Specification.”
  16. [5] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Standard 802.11a-1999.
  17. [12] P. F. M. Smulders, “Broadband Wireless LANs: A Feasibility Study,” PHD Thesis, Eindhoven University of Technology, the Netherlands, 1995.
  18. [14] 陳信宏, “SBR-image approach for indoor radio wave propagation modeling”, Ph.D. Thesis, National Taiwan University. 1997
  19. [15] Robert S. Elliott, “Antenna Theory and Design,” John Wiley & Sons, 2003.
  20. [16] Harry L. Van Trees, “Optimum Array Processing,” John Wiley & Sons, 2002.
  21. [18] T. K. Moon and W.C. Stirling, Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, 2000.
Times Cited
  1. 許正乾(2007)。室內無線通訊通道模式之研究。臺灣大學電信工程學研究所學位論文。2007。1-90。