Title

一致性成本分攤法則之公設法刻劃與策略性詮釋

Translated Titles

Axiomatic and Strategic Justifications for Consistent Cost Allocation Rules

DOI

10.6342/NTU.2012.02376

Authors

蔡明宏

Key Words

成本分攤問題 ; 公共財問題 ; 機場跑道成本分攤問題 ; 核仁 ; 限制利益均等法則 ; 公設化 ; 非合作賽局 ; 退化局 ; 一致性 ; 逆一致性 ; Cost sharing problems ; public goods problems ; airport problems ; nucleolus ; constrained equal benefits rule ; axiomization ; noncooperative games ; reduced games ; consistency ; converse consistency

PublicationName

臺灣大學國際企業學研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

博士

Advisor

葉俊顯;盧信昌

Content Language

英文

Chinese Abstract

本篇論文主要探討在機場跑道成本分攤問題的架構下,不同的退化局結構設定是否會刻劃出不同的成本分攤法則。我們經由提供兩個一致性機場跑道成本分攤法則(限制利益均等法則與核仁)的公設法刻劃與策略性詮釋來回答上述問題。在機場跑道成本分攤問題的文獻中,有許多形式的退化局的設定,其中以左端點成本扣除法與右端點成本扣除法的設定最為被廣泛應用與討論。我們首先定義在這兩種不同的退化局設定法下之兩組雙邊一致性與逆一致性公設,分別稱之為左端點(右端點)成本扣除之雙邊一致性與左端點(右端點)成本扣除之逆一致性公設。我們利用左端點成本扣除之雙邊一致性與左端點成本扣除之逆一致性性質為基礎進行公設刻劃限制利益均等法則。此外我們設計一個具有此兩種性質之兩階段非合作延展式賽局,並利用此賽局來探討限制利益均等法則的策略性詮釋。我們證明此賽局存在唯一的一個子賽局完美均衡結果,且此均衡結果與限制利益均等法則所導出的分配結果一致。接下來我們使用右端點成本扣除之雙邊一致性與右端點成本扣除之逆一致性性質進行對核仁的公設刻劃。另一方面,我們設計一個具有此兩種性質之三階段非合作延展式賽局來提供核仁的策略性詮釋。我們證明此賽局存在唯一的一個子賽局完美均衡結果即為 核仁之成本分攤之分配結果。從本篇論文所得到之結果,可知在機場跑道成本分攤問題中不同的退化局設定無論是從公設法或是非合作賽局法的觀點下皆能夠刻劃出完全不同的成本分攤法則。此外本篇論文也描述限制利益均等法則與核仁此兩個成本分攤法則之根本差異。

English Abstract

This dissertation consists of two parts that develop axiomatic and strategic justifications for two consistent cost allocation rules, the constrained equal benefits (CEB) rule and the nucleolus, in the airport problem, which is concerned with sharing the cost of an airstrip among agents who need airstrips of different lengths. We justify these two cost allocation rules based on the two major kinds of consistency, Left-endpoint Subtraction (LS) bilateral consistency and Right-endpoint Subtraction (RS) bilateral consistency and converse consistency properties, LS converse consistency and RS converse consistency in the airport problem, respectively. The first part of this dissertation investigates the implications of LS bilateral consistency and LS converse consistency in the airport problem. First, on the basis of the two properties, we characterize the constrained equal benefits rule, which equalizes agents' benefits subject to no one receiving a subsidy. Second, we introduce a 2-stage extensive form game that exploits LS bilateral consistency and LS converse consistency. We show that there is a unique subgame perfect equilibrium outcome of the game and moreover, it is the allocation chosen by the constrained equal benefits rule. In the second part of the dissetation, we address whether different formulations of consistency and converse consistency axioms provide strategic justifications for different rules. First, we propose RS bilateral consistency and RS converse consistency in the airport problem, and find that the nucleolus, which lexicographically maximizes the welfare of the worst-off coalitions, satisfies the two properties. We then introduce a 3-stage extensive form game to implement the nucleolus that exploits the properties. As we show, there is a unique subgame perfect equilibrium outcome of the game and moreover, it is the allocation chosen by the nucleolus. This result together with which given in the first part of this dissertation provides a positive answer to the question.

Topic Category 管理學院 > 國際企業學研究所
社會科學 > 管理學
Reference
  1. Arin, J., Inarra, E. and Luquin, P., (2009). A non-cooperative view on two airport cost sharing rules. Review of Economic Design 13, 361-376.
    連結:
  2. Champsaur, P., (1975). How to share the cost of a public good? International Journal of Game Theory 4, 113-129.
    連結:
  3. Chang, C. and Hu, C.-C., (2008). A non-cooperative interpretation of the f -just rules of bankruptcy problems. Games and Economic Behavior 63, 133-144.
    連結:
  4. Chun, Y., (2002). The converse consistency principle in bargaining. Games and Economic Behavior 40, 25-43.
    連結:
  5. Dagan, N., Serrano, R. and Volij, O., (1997). A noncooperative view of consistent bankruptcy rules. Games and Economic Behavior 18, 55-72.
    連結:
  6. Hart, S. and Mas-Colell, A., (1989). Potential, value, and consistency. Econometrica 57, 589-614.
    連結:
  7. Hurwicz, L., (1979). Outcome functions yielding Walrasian and Lindahl allocations at Nash equilibrium points. Review of Economic Studies 46, 217-225.
    連結:
  8. Hwang, Y.-A. and Yeh, C.-H., (2012). A characterization of the nucleolus without homogeneity in airport problems. Social Choice andWelfare 38, 355-364.
    連結:
  9. Krishna, V. and Serrano, R., (1996). Multilateral bargaining. Review of Economic Studies 63, 61-80.
    連結:
  10. Lensberg, T., (1987). Stability and collective rationality, Econometrica 55, 935-961.
    連結:
  11. Littlechild, S.C., (1974). A simple expression for the nucleolus in a special case. International Journal of Game Theory 3, 21-29.
    連結:
  12. Littlechild, S.C. and Owen, G., (1973). A simple expression for the Shapley value in a special case. Management Science 3, 370-372.
    連結:
  13. Littlechild, S.C. and Thompson, G.F., (1977). Aircraft landing fees: a game theory approach. Bell Journal of Economics 8, 186-204.
    連結:
  14. Maschler, M. and Owen, G., (1989). The consistency Shapley value for hyperplane games. International Journal of Game Theory 18, 389-407.
    連結:
  15. Maschler, M., Peleg, B. and Shapley, L.S., (1972). The kernel and bargaining set for convex games. International Journal of Game Theory 1, 73-93.
    連結:
  16. Moulin, H., (1985). The separability axiom and equal-sharing methods. Journal of Economics Theory 36, 120-148.
    連結:
  17. Orshan, G., (1993). The prenucleolus and the reduced game property: equal treatment replaces anonymity. International Journal of Game Theory 22, 241-248.
    連結:
  18. Peleg, B., (1986). On the reduced game property and its converse. International Journal of Game Theory 15, 187-200.
    連結:
  19. Potters, J. and Sudh¨olter, P., (1999). Airport problems and consistent allocation rules. Mathematical Social Sciences 38, 83-102.
    連結:
  20. Schmeidler, D., (1969). The nucleolus of a characteristic function games. SIAM Journal on Applied Mathematics 17, 1163-1170.
    連結:
  21. Serrano, R., (1995). Strategic bargaining, surplus sharing problems and the nucleolus. Journal of Mathematical Economics 24, 319-329.
    連結:
  22. _______, (1997). Reinterpreting the kernel. Journal of Economic Theory 77, 58-80.
    連結:
  23. _______, (2005). Fifty years of the Nash program, 1953-2003. Investigaciones Economicas 29, 219-258.
    連結:
  24. Serrano, R. and Vohra, R., (2002). Bargaining and bargaining sets. Games and Economic Behavior 39, 292-308.
    連結:
  25. Thomson, W., (2003) Axiomatic and game-theoretic analyses of bankruptcy and taxation problems: a survey. Mathematical Social Sciences 45, 249-297.
    連結:
  26. Varian, H.R., (1994). Squential contributions to public goods. Journal of Public Economics 53, 165-186.
    連結:
  27. Walker, M., (1981). A simple incentive compatible scheme for attaining Lindahl allocations. Econometrica 49, 65-71.
    連結:
  28. Yeh, C.-H., (2006). Reduction-consistency in collective choice problems. Journal of Mathematical Economics 42, 637-652.
    連結:
  29. Young, H.P., (1988). Distributive justice in taxation. Journal of Economic Theory 48, 321-335.
    連結:
  30. Yu, Y., (2005). Public goods provision: unit-by-unit cost-sharing rules and the core. Review of Economic Design 9, 363-376.
    連結:
  31. References
  32. Chun, Y., Hu, C.-C. and Yeh, C.-H., (2012a). Characterizations of the sequential contributions rule in airport problems. International Journal of Economic
  33. Theory 8, 77-85.
  34. _____, ____ and ____, (2012b). A non–cooperative foundation for the sequential equal contributions rule in the airport problem. Mimeo, The Institute of Economics, Academia Sinica, Taiwan.
  35. Davis, M. and Maschler, M., (1965). The kernel of a cooperative game. Naval Research Logistics Quarterly 12, 223-259.
  36. Sonmez, T., (1994). Population monotonicity of the nucleolus on a class of public good problems. Mimeo, University of Rochester, Rochester, NY, USA.
  37. __________, (2004). Cost allocation and airport problems. Mimeo, University of Rochester, Rochester, NY, USA.
  38. __________, (2006). How to divide when there is not enough; from the talmud to game theory. Mimeo, University of Rochester, Rochester, NY, USA.
  39. __________, (2010). Consistent allocation rules. Mimeo,University of Rochester, Rochester, NY, USA.