Title

Rashba 效應對於二維系統超導性質的影響與新反鐵磁半金屬 材料

Translated Titles

The effect of Rashba interaction in superconductivity for 2DEG and new half-metallic antiferromagnetic materials

Authors

翁克全

Key Words

超導 ; 二維 ; 反鐵磁 ; 半金屬 ; Rashba ; superconductivity ; two-dimension ; antiferromagnetic ; half-metal

PublicationName

臺灣大學物理研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

博士

Advisor

胡崇德

Content Language

英文

Chinese Abstract

這篇論文由兩部份所組成。第一部份是Rashba 效應對二維電子超 導性的影響。對於垂直二維電子平面方向的電場,會對運動中電子的 自旋產生偶合效應,這稱為的Rashba 效應。BCS一般而言也適用 二維電子氣(不含Rashba 效應),因此可得s-wave 的超導體。Rashba 效應會分裂二維電子氣中電子自旋的簡併度,因此會產生一個跨分裂 自旋帶的能隙方程式。我們發現能隙方程式跟動量p 的關係,除了之 前預期的一個相位,還會有一個cos 因子,這個cos 因子將會影響能 隙的大小,並且此能隙成為類似p-wave 的態勢。對於似s-wave 的部 份,因為跨自旋能帶電子對和同自旋能帶電子對對於能隙的貢獻是相 消的,因此似p-wave 部份主導了能隙方程式。同時我們也詳細的分 析了超導體的電子聲子的交互作用。如果我們只考慮了一般散射過程 (Normal process),理論估計的結果是無法和實驗相符的。當我們也考 慮了Umklapp process 的貢獻,估計的結果和實驗是一致的。我們發現 Umklapp process 是重要的甚至是主要的貢獻。 第二部份是尋找新的反鐵磁半金屬材料。我們利用第一原理的計算 研究雙鈦鈣-鉍鉛過渡金屬氧化物BiPbBB'O6,其中交換關聯能量是用 推廣的密度梯度近似(GGA) 的方法,另外我們也計算了密度梯度近似 加上了在位交互作用(GGA+U)。其中BB' 是可能的過渡金屬組合。我 們發現雙鈦鈣-鉍鉛鉻銅氧與鉍鉛釩釕氧是反鐵磁半斤屬材料,而鉍鉛 釩鋨氧則是接近反鐵磁半金屬氧化物。我們提出其中反鐵磁與半金屬 特性應該是源自鄰近的過渡金屬藉由中間的氧離子所產生的雙倍交換 機制(double-exchange mechanism)。

English Abstract

There are two parts in this thesis. The first part is the effect of Rashba interaction in superconductivity of the two-dimensional electron gas (2DEG). The interface electric field normal to the 2DEG plane coupled to the spin of the moving electron is the so called Rashba interaction. In the ordinary 2DEG (in the absence of Rashba interaction), BCS theory is applied and the s-wave superconductivity is obtained. The precence of Rashba interaction would lift the spin degeneracy and result in coupled gap equations of two spin bands. We find that the gap function △(p) depends on p not only through it it phase △0ei φp as was predicted before, but also depends on an additional cos(φp) factor which modulates the magnitude of the gap energy and the magnitude is of p-wave like form. The p-wave like gap energy dominates the gap equations because the s-wave like part was much suppressed due to the destructive contribution from inter-band and intra-band pairings. We perform a more detail analysis of electron-phonon interaction in superconductivity. While only considering the normal process, the calculated transition temperature can not agree with the experimental results. While the Umklapp process is included, the the calculated result is consistent with experiments. We find that the Umklapp process is important and can be the dominant contribution in superconductivity. The second part is to find new half-metallic antiferromagnetic (HM-AFM) materials. We theoretically investigated the electronic structures of doubleperovskite BiPbBB′O6 based on first-principles density functional calculation with generalized gradient approximation (GGA) and GGA incorporated with Coulomb correlation interaction U (GGA + U). BB′ are possible transition metal atomic combinations. We find that BiPbVRuO6 and BiPbCrCuO6 double perovskites are HM-AFM materials and BiPbVOsO6 is a nearly HMAFM material. We suggest that the HM and AFM properties of these materials is caused by the double-exchange mechanism between neighboring B and B′ ion via the intermediated oxygen ion.

Topic Category 基礎與應用科學 > 物理
理學院 > 物理研究所
Reference
  1. [1] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
    連結:
  2. 294, 1488 (2001).
    連結:
  3. [5] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95 146801 (2005); 226801
    連結:
  4. (2005).
    連結:
  5. 1335 (1997).
    連結:
  6. [9] H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M. Johnson,
    連結:
  7. Science 325, 1515 (2009).
    連結:
  8. M. Echenique, and P. Hofmann, Phys. Rev. Lett. 93, 046403 (2004).
    連結:
  9. and J. H. Dil, Phys Rev. B. 84, 193406 (2011).
    連結:
  10. [13] J. H. Dil, J. Phys.: Condens. Mat. 21, 403001 (2009).
    連結:
  11. Rep. 3, 1963 (2013).
    連結:
  12. Phys. Rev. Lett. 101, 266802 (2008).
    連結:
  13. [16] N. Reyren, et al., Science 317, 1196 (2007).
    連結:
  14. [17] J. Biscaras, N. Bergeal, A. Kushwaha, T. Wolf, A. Rastogi, R. C. Budhani,
    連結:
  15. and J. Lesueur, Nat. Commun. 1 (2010).
    連結:
  16. [18] Q. L. He, et al., Nat. Commun. 5 (2014).
    連結:
  17. [19] Y. Guo, et al., Science 306, 1915 (2004).
    連結:
  18. [21] T. Zhang, P. Cheng, W. J. Li, Y. J. Sun, G. Wang, X. G. Zhu, K. He, L.
    連結:
  19. Xue, Nat. Phys. 6, 104 (2010).
    連結:
  20. [22] V. M. Edelstein, Phys. Rev. Lett. 75, 2004 (1995).
    連結:
  21. [23] L. P. Gor'kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004 (2001).
    連結:
  22. [24] O. Vafek and L. Y. Wang, Phys. Rev. B 84, 172501 (2011).
    連結:
  23. 79, 060505 (2009).
    連結:
  24. [27] A. Keles, A. V. Andreev, and B. Z. Spivak, Phys. Rev. B, 014505 89
    連結:
  25. (2014).
    連結:
  26. [28] P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).
    連結:
  27. [29] D. J. Scalapino, Y. Wada, and J. C. Swihart, Phys. Rev. Lett. 14, 102
    連結:
  28. (1965).
    連結:
  29. Phys Rev 108, 1175 (1957).
    連結:
  30. [33] M. Tinkham, Introduction to Superconductivity, Second Edition (Dover,
    連結:
  31. [35] L. N. Cooper, Phys Rev 104, 1189 (1956).
    連結:
  32. [36] A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).
    連結:
  33. [38] J. R. Schrieffer, Theory of Superconductivity (W. A, Benjamin, Inc., New
    連結:
  34. [40] T. Schmidt and E. Bauer, Phys. Rev. B 62, 15815 (2000).
    連結:
  35. [41] B. J. C. van der Hoeven, Jr. and P. H. Keesom Phys. Rev. 137, A103 (1965)
    連結:
  36. [42] M. L. Cohen and P. W. Anderson, AIP Conf. Proc. 4, 17 (1971)
    連結:
  37. [44] W. L. Mcmillan, Phys. Rev. 167, 331 (1968).
    連結:
  38. Jpn. 67, 560 (1998).
    連結:
  39. [46] J. Moreno and P. Coleman, Phys. Rev. B 53, R2995 (1996).
    連結:
  40. [47] B. S. Shivaram, Y. H. Jeong, T. F. Rosenbaum, and D. G. Hinks, Phys.
    連結:
  41. Rev. Lett. 56, 1078 (1986).
    連結:
  42. Maeno, Phys. Rev. Lett. 86, 5986 (2001).
    連結:
  43. [49] M. F. Smith and M. B. Walker, Phys. Rev. B 67, 214509 (2003).
    連結:
  44. [50] Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451 (1995).
    連結:
  45. H. Koinuma, and K. Kitazawa, J. Phys. Chem. Solids 54, 1351 (1993).
    連結:
  46. Rev. B. 62, R6131 (2000).
    連結:
  47. [1] G. A. Prinz, Science 282, 1660 (1998).
    連結:
  48. 294, 1488 (2001).
    連結:
  49. [3] R. A. de Groot, Physica B 172, 45 (1991).
    連結:
  50. [4] H. van Leuken and R. A. de Groot, Phys. Rev. Lett 74, 1171 (1995).
    連結:
  51. J. Phys. Soc. Jpn. 71, 178 (2002).
    連結:
  52. Rev. B 68, 125114 (2003).
    連結:
  53. [7] H. Akai and M. Ogura, Phys Rev. Lett. 97, 026401 (2006).
    連結:
  54. [8] M. Ogura, Y. Hashimoto, and H. Akai, Phys. Status Solidi C 3, 4160
    連結:
  55. (2006).
    連結:
  56. [9] H. Akai and M. Ogura, Hyperfine Interactions 176, 21 (2007).
    連結:
  57. Matter 18 6171 (2006).
    連結:
  58. [11] N. H. Long, H. Akai, and M. Ogura, J. Phys. Condens. Matter 21, 064241
    連結:
  59. (2009).
    連結:
  60. [13] X. Hu, Adv. Mater 24, 294 (2012).
    連結:
  61. [14] Y. M. Nie and X. Hu, Phys. Rev. Lett. 100, 117203 (2008).
    連結:
  62. [15] S. J. Hu and X. Hu, J. Phys. Chem. C 114, 11614 (2010).
    連結:
  63. [16] W. E. Pickett, Phys. Rev. B 57, 10613 (1998).
    連結:
  64. [20] Y. K. Wang and G. Y. Guo, Phys. Rev. B 73, 064424 (2006).
    連結:
  65. 093908 (2010).
    連結:
  66. [22] K.I. Kobayashi, T. Kimura, H. Sawada, K.K. Tekura, and Y. Tokura, Nature
    連結:
  67. Rev. B 64, 092411 (2001).
    連結:
  68. Phys. Rev. Lett. 59, 2788 (1987).
    連結:
  69. Nature (London) 392, 794 (1998).
    連結:
  70. [29] C. Zener, Phys. Rev. 82, 403 (1951).
    連結:
  71. [30] P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).
    連結:
  72. ibid. 59, 1758 (1999).
    連結:
  73. [32] G. Kresse, and J. Hafner, Phys. Rev. B 48, 13115 (1993).
    連結:
  74. [33] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996); Phys.
    連結:
  75. Rev. B 54, 11169 (1996).
    連結:
  76. 16861 (1994).
    連結:
  77. [35] J. Wang, J. A. Meng, and Z. J. Wu, Chem. Phys. Lett. 501, 324 (2011).
    連結:
  78. [36] H. J. Xiang and M. H. Whangbo, Phys. Rev. B 75, 052407 (2007).
    連結:
  79. [37] H. Hadipour and M. Akhavan, J. Solid. State Chem4. 183, 1678 (2010).
    連結:
  80. (2013).
    連結:
  81. [39] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and
    連結:
  82. L. J. Sham, Phys. Rev. 140, A1133 (1965).
    連結:
  83. [40] M. P. Marder, Condensed Matter Physics (Wiley-Interscience, New York,
    連結:
  84. [41] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865
    連結:
  85. and S. G. Louie, Phys Rev B 62, 4927 (2000).
    連結:
  86. (1991).
    連結:
  87. [44] P. W. Anderson, Phys Rev 124, 41 (1961).
    連結:
  88. [45] V. I. Anisimov and O. Gunnarsson, Phys Rev B 43, 7570 (1991).
    連結:
  89. Calculations:Beyond the Local Density Approximation (Gordon and
    連結:
  90. Part I
  91. [2] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von
  92. Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science
  93. [3] Semiconductor Spintronics and Quantum Computation, edited by D.D.
  94. Awschalom, D. Loss and N. Samarth, (Springer Berlin, 2003)
  95. [4] S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301, 1348 (2003).
  96. [6] E. I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960) [Sov. Phys. Solid
  97. State 2, 1109 (1960)].
  98. [7] Y. A. Bychov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
  99. [8] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78,
  100. [10] S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett. 77, 3419
  101. (1996).
  102. [11] Y. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V. Chulkov, S. Blugel, P.
  103. [12] B. Slomski, G. Landolt, F. Meier, L. Patthey, G. Bihlmayer, J. Osterwalder,
  104. [14] B. Slomski, G. Landolt, G. Bihlmayer, J. Osterwalder, and J. H. Dil, Sci.
  105. [15] J. H. Dil, F. Meier, J. Lobo-Checa, L. Patthey, G. Bihlmayer, and J. Osterwalder,
  106. [20] S. Y. Qin, J. Kim, Q. Niu, and C. K. Shih, Science 324, 1314 (2009).
  107. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, H. Q. Lin, J. F. Jia1 and Q. K.
  108. [25] Y. Tanaka, T. Yokoyama, A. V. Balatsky, and N. Nagaosa, Phys. Rev. B
  109. [26] S. Maiti, V. Zyuzin, and D. L. Maslov, Phys. Rev. B 91, 035106 (2015).
  110. [30] J. C. Swihart, D. J. Scalapino, and Y. Wada, Phys Rev Lett 14, 106 (1965).
  111. [31] Superconductivity, edited by R. D. Parks. (Marcel Dekker, New York,
  112. 1969) Chap. 10, pp. 449-560.
  113. [32] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys Rev 106, 162 (1957);
  114. New York, 1996)
  115. [34] G. Grosso and G. P. Parravicini, Solid State Physics (Academic Press,
  116. 2000)
  117. [37] N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A new method in
  118. the Theory of Superconductivity (Consultants Bureau, , New York, 1959).
  119. York, 1964).
  120. [39] B. Slomski, G. Landolt, G. Bihlmayer, J. Osterwalder, and J. H. Dil, Sci
  121. Rep-Uk 3 (2013)
  122. [43] G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 966 (1960); 39, 1437
  123. (1960) ; Soviet Phys. JkTP 11, 696 (1960); 12, 1000 (1961).
  124. [45] S. Nishizaki, Y. Maeno, S. Farner, S. Ikeda, and T. Fujita, J. Phys. Soc.
  125. [48] C. Lupien, W. A. MacFarlane, C. Proust, L. Taillefer, Z. Q. Mao, and Y.
  126. [51] T. Hasegawa, M. Nantoh, S. Heike, A. Takagi, M. Ogino, M. Kawasaki,
  127. [52] I. Iguchi, W. Wang, M. Yamazaki, Y. Tanaka, and S. Kashiwaya, Phys.
  128. [53] C. R. Hu, Phys. Rev. Lett. 72, 1526 (1994); Phys. Rev. B 57, 1266 (1998).
  129. Part II
  130. [2] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von
  131. Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science
  132. [5] M. S. Park, S. K. Kwon, and B. I. Min, Phys. Rev. B 64, 100403(R) (2001);
  133. [6] D. Kodderitzsch, W. Hergert, Z. Szotek, and W. M. Temmerman, Phys.
  134. [10] S. Wurmehl, H. C. Kandpal, G. H. Fecher, and C. Felser, J. Phys.: Condens.
  135. [12] M. Jourdan, et al., Nat Commun 5, 3974 (2014).
  136. [17] Y. K. Wang, P. H. Kee and G. Y. Guo, Phys. Rev. B 80, 224418 (2009).
  137. [18] K. W. Lee and K. H. Ahn, Phys. Rev. B 85 (2012).
  138. [19] J. H. Park, S. K. Kwon, and B. I. Min, Phys. Rev. B 65, 174401 (2002).
  139. [21] S. H. Chen, Z. R. Xiao, Y. P. Liu, and Y. K. Wang, J. Appl. Phys. 108,
  140. 395, 677 (1998).
  141. [23] J. Navarro, C. Frontera, L. Balcells, B. Martinez, and J. Fontcuberta, Phys.
  142. [24] P. Sanyal, H. Das, and T. Saha-Dasgupta, Phys. Rev. B, 80 224412 (2009).
  143. [25] K. Kawanaka, I. Hase, S. Toyama, and Y. Nishihara, J Phys Soc Jpn 68,
  144. 2890 (1999).
  145. [26] K. P. Kamper, W. Schmitt, G. Guntherodt, R. J. Gambino, and R. Ruf,
  146. [27] J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan
  147. [28] Y. S. Dedkov, U. Rudiger, and G. Guntherodt, Phys Rev B 65 (2002).
  148. [31] P. E. Blochl, Phys. Rev. B 50, 17953 (1994); G. Kresse and D. Joubert,
  149. [34] I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov, Phys. Rev. B. 50,
  150. [38] P. Jiao, Y. Liu, X. Y. Wang, and J. J. Chen, Comp. Mater. Sci. 69, 284
  151. 2000)
  152. (1996).
  153. [42] M. S. Hybertsen and S. G. Louie, Phys Rev B 34, 5390 (1986); M. Rohlfing
  154. [43] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943
  155. [46] V. I. Anisimov, ed. Strong Coulomb Correlations in Electronic Structure
  156. Breach, New York, 2000).