Title

聚酯型兒茶素A抑制腸癌細胞MMP-9與CCL2之表現進而抑制腸癌細胞轉移

Translated Titles

Theasinensin A exerts anti-metastatic effects on HT-29 cells via downregulating the expression of MMP-9 and CCL2

DOI

10.6342/NTU201603481

Authors

李佳軒

Key Words

癌症轉移 ; 聚酯型兒茶素A (Theasinensin A) ; MMP-9 ; CCL2 ; Cancer metastasis ; theasinensin A (TSA) ; matrix metalloproteinase-9 (MMP-9) ; C-C motif ligand 2 (CCL2)

PublicationName

臺灣大學食品科技研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

潘敏雄

Content Language

英文

Chinese Abstract

許多已開發國家大腸癌已位居癌症死亡率的前三名,而多半造成癌症死亡的原因是癌症轉移(Cancer metastasis)而非腫瘤本身。由於大腸癌在初期階段通常不會表現明顯症狀,所以多數大腸癌患者確診時其病程都已進入轉移階段。本研究Gelatin zymography初篩的結果顯示聚酯型兒茶素A可能具有抑制腸癌細胞轉移的潛力。除此之外,過去文獻指出烏龍茶中的聚酯型兒茶素A (Theasinensin A, TSA) 具有抗發炎的功效,然而其是否具有抑制腸癌細胞轉移的效果尚未明瞭。因此本篇研究旨在探討聚酯型兒茶素A抑制腸癌細胞轉移之機轉。由於過去的文獻指出MMP-9和CCL2 分別在腸癌轉移的內滲(Intravasation)與外滲(Extravasation)階段扮演重要角色,因此本研究將這兩個分子設為探討腸癌細胞轉移之目標蛋白。實驗結果顯示聚酯型兒茶素A可以有效的抑制由12-O-Tetradecanoylphorbol-13-acetate (TPA) 所誘導之上皮-間質細胞轉換(EMT)、間質-上皮細胞轉換(MET)以及細胞的非貼覆性生長。除此之外,聚酯型兒茶素A可能是透過抑制由TPA所誘導的ERK1/2和p38之磷酸化以及AP-1的活性進而抑制MMP-9 和CCL2的蛋白表現量從而有效地抑制由TPA所誘導的腸癌細胞轉移。綜合各項實驗結果,我們推測聚酯型兒茶素A可能具有抑制腸癌細胞轉移之潛力。

English Abstract

Cancer metastasis, the terminal stage of cancer development, is accounting for approximately 90% of all human cancer mortalities. Previous research have suggested that theasinensin A (TSA) has anti-inflammatory effects; however, its potential for inhibiting colon cancer metastasis remains to be unclear. Therefore, in this research, we focused on investigating the mechanism of inhibitory effects of TSA on TPA-induced colon cancer cell migration. Previous studies report that matrix metalloproteinase-9 (MMP-9) is critical to intravasation and C-C motif ligand 2 (CCL2) is critical to extravasation. In our research, we tried to figure out if TSA can downregulate TPA-induced protein expression and activity of MMP-9 and CCL2 mRNA expression in human colon HT-29 cells. Our results showed that TSA effectively inhibited TPA-induced epithelial-mesenchymal transition (EMT), mesenchymal-epithelial transition (MET), cell anchorage independent growth and cell migration in HT-29 cells. Moreover, TSA may downregulate TPA-induced expression of MMP-9 and CCL2 via inhibiting TPA-induced phosphorylation of ERK1/2 and p38 and AP-1 activation whereby further inhibit cancer cell migration. Based on our findings, we suggested that TSA could be a potential compound for preventing colon cancer metastasis.

Topic Category 生物資源暨農學院 > 食品科技研究所
工程學 > 化學工業
Reference
  1. Aokage, K., Ishii, G., Ohtaki, Y., Yamaguchi, Y., Hishida, T., Yoshida, J., . . . Ochiai, A. (2011). Dynamic molecular changes associated with epithelial-mesenchymal transition and subsequent mesenchymal-epithelial transition in the early phase of metastatic tumor formation. Int J Cancer, 128(7), 1585-1595. doi:10.1002/ijc.25500
    連結:
  2. Asayama, Y., Taguchi Ki, K., Aishima Si, S., Nishi, H., Masuda, K., & Tsuneyoshi, M. (2002). The mode of tumour progression in combined hepatocellular carcinoma and cholangiocarcinoma: an immunohistochemical analysis of E-cadherin, alpha-catenin and beta-catenin. Liver, 22(1), 43-50.
    連結:
  3. Bader, A. G., Kang, S., Zhao, L., & Vogt, P. K. (2005). Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer, 5(12), 921-929. doi:10.1038/nrc1753
    連結:
  4. Boue, S. M., Shih, B. Y., Burow, M. E., Eggleston, G., Lingle, S., Pan, Y.-B., . . . Bhatnagar, D. (2013). Postharvest Accumulation of Resveratrol and Piceatannol in Sugarcane with Enhanced Antioxidant Activity. J Agric Food Chem, 61(35), 8412-8419. doi:10.1021/jf4020087
    連結:
  5. Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L. A., . . . Kirchner, T. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A, 98(18), 10356-10361. doi:10.1073/pnas.171610498
    連結:
  6. Brabletz, T., Jung, A., Spaderna, S., Hlubek, F., & Kirchner, T. (2005). Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer, 5(9), 744-749. doi:10.1038/nrc1694
    連結:
  7. Buonato, J. M., & Lazzara, M. J. (2014). ERK1/2 blockade prevents epithelial-mesenchymal transition in lung cancer cells and promotes their sensitivity to EGFR inhibition. Cancer Res, 74(1), 309-319. doi:10.1158/0008-5472.can-12-4721
    連結:
  8. Calamini, B., Ratia, K., Malkowski, M. G., Cuendet, M., Pezzuto, J. M., Santarsiero, B. D., & Mesecar, A. D. (2010). Pleiotropic mechanisms facilitated by resveratrol and its metabolites. Biochem J, 429(2), 273-282. doi:10.1042/bj20091857
    連結:
  9. Cantley, L. C. (2002). The Phosphoinositide 3-Kinase Pathway. Science, 296(5573), 1655-1657. doi:10.1126/science.296.5573.1655
    連結:
  10. Catalgol, B., Batirel, S., Taga, Y., & Ozer, N. K. (2012). Resveratrol: French paradox revisited. Front Pharmacol, 3, 141. doi:10.3389/fphar.2012.00141
    連結:
  11. Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res, 66(23), 11271-11278. doi:10.1158/0008-5472.can-06-2044
    連結:
  12. Chaffer, C. L., Thompson, E. W., & Williams, E. D. (2007). Mesenchymal to epithelial transition in development and disease. Cells Tissues Organs, 185(1-3), 7-19. doi:10.1159/000101298
    連結:
  13. Chaffer, C. L., & Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science, 331(6024), 1559-1564. doi:10.1126/science.1203543
    連結:
  14. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2(8), 563-572. doi:10.1038/nrc865
    連結:
  15. Chao, Y. L., Shepard, C. R., & Wells, A. (2010). Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Molecular Cancer, 9, 179-179. doi:10.1186/1476-4598-9-179
    連結:
  16. Chen, J., Qin, S., Xiao, J., Tanigawa, S., Uto, T., Hashimoto, F., . . . Hou, D.-X. (2011). A Genome-Wide Microarray Highlights the Antiinflammatory Genes Targeted by Oolong Tea Theasinensin A in Macrophages. Nutrition and Cancer, 63(7), 1064-1073. doi:10.1080/01635581.2011.596643
    連結:
  17. Christensen, J., El-Gebali, S., Natoli, M., Sengstag, T., Delorenzi, M., Bentz, S., . . . Anderle, P. (2012). Defining new criteria for selection of cell-based intestinal models using publicly available databases. BMC Genomics, 13, 274. doi:10.1186/1471-2164-13-274
    連結:
  18. Chun, E., Lavoie, S., Michaud, M., Gallini, C. A., Kim, J., Soucy, G., . . . Garrett, W. S. (2015). CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear Myeloid-Derived Suppressor Cell Population and Function. Cell Rep, 12(2), 244-257. doi:10.1016/j.celrep.2015.06.024
    連結:
  19. Chung, T. W., Lee, Y. C., & Kim, C. H. (2004). Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. Faseb j, 18(10), 1123-1125. doi:10.1096/fj.03-1429fje
    連結:
  20. del Barco Barrantes, I., & Nebreda, A. R. (2012). Roles of p38 MAPKs in invasion and metastasis. Biochem Soc Trans, 40(1), 79-84. doi:10.1042/bst20110676
    連結:
  21. Deng, X., Xu, M., Yuan, C., Yin, L., Chen, X., Zhou, X., . . . Pang, L. (2013). Transcriptional regulation of increased CCL2 expression in pulmonary fibrosis involves nuclear factor-kappaB and activator protein-1. Int J Biochem Cell Biol, 45(7), 1366-1376. doi:10.1016/j.biocel.2013.04.003
    連結:
  22. Derksen, P. W. B., Liu, X., Saridin, F., van der Gulden, H., Zevenhoven, J., Evers, B., . . . Jonkers, J. (2006). Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell, 10(5), 437-449. doi:http://dx.doi.org/10.1016/j.ccr.2006.09.013
    連結:
  23. Duronio, V. (2008). The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochemical Journal, 415(3), 333-344. doi:10.1042/bj20081056
    連結:
  24. Eferl, R. (2013). CCL2 at the crossroad of cancer metastasis. Jakstat, 2(2), e23816. doi:10.4161/jkst.23816
    連結:
  25. Engelman, J. A., Luo, J., & Cantley, L. C. (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet, 7(8), 606-619. Retrieved from http://dx.doi.org/10.1038/nrg1879
    連結:
  26. Engelman, J. A., Luo, J., & Cantley, L. C. (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet, 7(8), 606-619. doi:10.1038/nrg1879
    連結:
  27. Fader, A. N., Rasool, N., Vaziri, S. A., Kozuki, T., Faber, P. W., Elson, P., . . . Ganapathi, R. (2010). CCL2 expression in primary ovarian carcinoma is correlated with chemotherapy response and survival outcomes. Anticancer Res, 30(12), 4791-4798.
    連結:
  28. Ferretti, A., Flanagan, V. P., Bondarovich, H. A., & Gianturco, M. A. (1968). The chemistry of tea. Structures of compounds A and B of Roberts and reactions of some model compounds. J Agric Food Chem, 16(5), 756-761. doi:10.1021/jf60159a025
    連結:
  29. Flamini, R., De Rosso, M., De Marchi, F., Dalla Vedova, A., Panighel, A., Gardiman, M., . . . Bavaresco, L. (2013). An innovative approach to grape metabolomics: stilbene profiling by suspect screening analysis. Metabolomics, 9(6), 1243-1253. doi:10.1007/s11306-013-0530-0
    連結:
  30. Frisch, S. M., & Francis, H. (1994). Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol, 124(4), 619-626.
    連結:
  31. Frisch, S. M., Schaller, M., & Cieply, B. (2013). Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis. J Cell Sci, 126(Pt 1), 21-29. doi:10.1242/jcs.120907
    連結:
  32. Fruman, D. A., & Rommel, C. (2014). PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov, 13(2), 140-156. doi:10.1038/nrd4204
    連結:
  33. Garrett, A. R., Weagel, E. G., Martinez, A. D., Heaton, M., Robison, R. A., & O'Neill, K. L. (2014). A novel method for predicting antioxidant activity based on amino acid structure. Food Chem, 158, 490-496. doi:10.1016/j.foodchem.2014.02.102
    連結:
  34. George, S. E., Bungay, P. J., & Naylor, L. H. (1997). Functional coupling of endogenous serotonin (5-HT1B) and calcitonin (C1a) receptors in CHO cells to a cyclic AMP-responsive luciferase reporter gene. J Neurochem, 69(3), 1278-1285.
    連結:
  35. Giehl, K. (2005). Oncogenic Ras in tumour progression and metastasis. Biol Chem, 386(3), 193-205. doi:10.1515/bc.2005.025
    連結:
  36. Griner, E. M., & Kazanietz, M. G. (2007). Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer, 7(4), 281-294. doi:10.1038/nrc2110
    連結:
  37. Gschwendt., M., Kittstein., W., & Marks., F. (1991). Protein kinase C activationby phorbol esters: do cysteine-rich regions and pseudosubstrate motifs play a role. TIBS, 16.
    連結:
  38. Guadamillas, M. C., Cerezo, A., & del Pozo, M. A. (2011). Overcoming anoikis – pathways to anchorage-independent growth in cancer. Journal of Cell Science, 124(19), 3189-3197. doi:10.1242/jcs.072165
    連結:
  39. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57-70.
    連結:
  40. Hashimoto, F., Ono, M., Masuoka, C., Ito, Y., Sakata, Y., Shimizu, K., . . . Nohara, T. (2003). Evaluation of the Anti-oxidative Effect (in vitro) of Tea Polyphenols. Biosci Biotechnol Biochem, 67(2), 396-401. doi:10.1271/bbb.67.396
    連結:
  41. Hatano, T., Kusuda, M., Hori, M., Shiota, S., Tsuchiya, T., & Yoshida, T. (2003). Theasinensin A, a tea polyphenol formed from (-)-epigallocatechin gallate, suppresses antibiotic resistance of methicillin-resistant Staphylococcus aureus. Planta Med, 69(11), 984-989. doi:10.1055/s-2003-45142
    連結:
  42. Higdon, J. V., & Frei, B. (2003). Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions. Critical Reviews in Food Science and Nutrition, 43(1), 89-143. doi:10.1080/10408690390826464
    連結:
  43. Hisanaga, A., Ishida, H., Sakao, K., Sogo, T., Kumamoto, T., Hashimoto, F., & Hou, D.-X. (2014). Anti-inflammatory activity and molecular mechanism of Oolong tea theasinensin. Food & Function, 5(8), 1891-1897. doi:10.1039/C4FO00152D
    連結:
  44. Hisanaga, A., Ishida, H., Sakao, K., Sogo, T., Kumamoto, T., Hashimoto, F., & Hou, D. X. (2014). Anti-inflammatory activity and molecular mechanism of Oolong tea theasinensin. Food Funct, 5(8), 1891-1897. doi:10.1039/c4fo00152d
    連結:
  45. Hugo, H., Ackland, M. L., Blick, T., Lawrence, M. G., Clements, J. A., Williams, E. D., & Thompson, E. W. (2007). Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol, 213(2), 374-383. doi:10.1002/jcp.21223
    連結:
  46. Hurst, W. J., Glinski, J. A., Miller, K. B., Apgar, J., Davey, M. H., & Stuart, D. A. (2008). Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J Agric Food Chem, 56(18), 8374-8378. doi:10.1021/jf801297w
    連結:
  47. Isaacs, C. E., Xu, W., Merz, G., Hillier, S., Rohan, L., & Wen, G. Y. (2011). Digallate Dimers of (−)-Epigallocatechin Gallate Inactivate Herpes Simplex Virus. Antimicrobial Agents and Chemotherapy, 55(12), 5646-5653. doi:10.1128/AAC.05531-11
    連結:
  48. Jerkovic, V., Callemien, D., & Collin, S. (2005). Determination of stilbenes in hop pellets from different cultivars. J Agric Food Chem, 53(10), 4202-4206. doi:10.1021/jf050222m
    連結:
  49. Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nat Rev Cancer, 9(4), 239-252. doi:10.1038/nrc2618
    連結:
  50. Kapetanovic, I. M., Muzzio, M., Huang, Z., Thompson, T. N., & McCormick, D. L. (2011). Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol, 68(3), 593-601. doi:10.1007/s00280-010-1525-4
    連結:
  51. Karin, M. (1995). The Regulation of AP-1 Activity by Mitogen-activated Protein Kinases. Journal of Biological Chemistry, 270(28), 16483-16486. doi:10.1074/jbc.270.28.16483
    連結:
  52. Katso, R., Okkenhaug, K., Ahmadi, K., White, S., Timms, J., & Waterfield, M. D. (2001). Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol, 17, 615-675. doi:10.1146/annurev.cellbio.17.1.615
    連結:
  53. Kazanietz, M. G. (2010 ). Protein Kinase C in Cancer Signaling and Therapy: Springer Science+Business Media, LLC.
    連結:
  54. Kim, E. K., & Choi, E. J. (2010). Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta, 1802(4), 396-405. doi:10.1016/j.bbadis.2009.12.009
    連結:
  55. Kitano, K., Nam, K.-Y., Kimura, S., Fujiki, H., & Imanishi, Y. (1997). Sealing effects of (−)-epigallocatechin gallate on protein kinase C and protein phosphatase 2A. Biophysical Chemistry, 65(2), 157-164. doi:http://dx.doi.org/10.1016/S0301-4622(96)02254-5
    連結:
  56. Ko, Y. J., Kim, H. H., Kim, E. J., Katakura, Y., Lee, W. S., Kim, G. S., & Ryu, C. H. (2013). Piceatannol inhibits mast cell-mediated allergic inflammation. Int J Mol Med, 31(4), 951-958. doi:10.3892/ijmm.2013.1283
    連結:
  57. Kowalski, P. J., Rubin, M. A., & Kleer, C. G. (2003). E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res, 5(6), R217-222. doi:10.1186/bcr651
    連結:
  58. Krafczyk, N., Kötke, M., Lehnert, N., & Glomb, M. A. (2008). Phenolic composition of rhubarb. European Food Research and Technology, 228(2), 187-196. doi:10.1007/s00217-008-0922-y
    連結:
  59. Kukreja, A., Wadhwa, N., & Tiwari, A. (2014). Therapeutic Role of Resveratrol and Piceatannol in Disease Prevention. Journal of Blood disorder and transfusion, 5(9). doi:10.4172
    連結:
  60. Kuo, P. L., & Hsu, Y. L. (2008). The grape and wine constituent piceatannol inhibits proliferation of human bladder cancer cells via blocking cell cycle progression and inducing Fas/membrane bound Fas ligand-mediated apoptotic pathway. Mol Nutr Food Res, 52(4), 408-418. doi:10.1002/mnfr.200700252
    連結:
  61. Landrault, N., Larronde, F., Delaunay, J. C., Castagnino, C., Vercauteren, J., Merillon, J. M., . . . Teissedre, P. L. (2002). Levels of stilbene oligomers and astilbin in French varietal wines and in grapes during noble rot development. J Agric Food Chem, 50(7), 2046-2052.
    連結:
  62. Langenskiold, M., Holmdahl, L., Falk, P., & Ivarsson, M. L. (2005). Increased plasma MMP-2 protein expression in lymph node-positive patients with colorectal cancer. Int J Colorectal Dis, 20(3), 245-252. doi:10.1007/s00384-004-0667-4
    連結:
  63. Latva-Mäenpää, H., Laakso, T., Sarjala, T., Wähälä, K., & Saranpää, P. (2013). Variation of stilbene glucosides in bark extracts obtained from roots and stumps of Norway spruce (Picea abies [L.] Karst.). Trees, 27(1), 131-139. doi:10.1007/s00468-012-0780-x
    連結:
  64. Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., & Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284(5751), 67-68. Retrieved from http://dx.doi.org/10.1038/284067a0
    連結:
  65. Maruki-Uchida, H., Kurita, I., Sugiyama, K., Sai, M., Maeda, K., & Ito, T. (2013). The protective effects of piceatannol from passion fruit (Passiflora edulis) seeds in UVB-irradiated keratinocytes. Biol Pharm Bull, 36(5), 845-849.
    連結:
  66. Matsui, T., Tanaka, T., Tamura, S., Toshima, A., Tamaya, K., Miyata, Y., . . . Matsumoto, K. (2007). α-Glucosidase Inhibitory Profile of Catechins and Theaflavins. J Agric Food Chem, 55(1), 99-105. doi:10.1021/jf0627672
    連結:
  67. Matsumoto, N., Kohri, T., Okushio, K., & Hara, Y. (1996). Inhibitory Effects of Tea Catechins, Black Tea Extract and Oolong Tea Extract on Hepatocarcinogenesis in Rat. Japanese Journal of Cancer Research, 87(10), 1034-1038. doi:10.1111/j.1349-7006.1996.tb03106.x
    連結:
  68. McCormack, D., & McFadden, D. (2013). A Review of Pterostilbene Antioxidant Activity and Disease Modification. Oxidative Medicine and Cellular Longevity, 2013, 15. doi:10.1155/2013/575482
    連結:
  69. McCubrey, J. A., Lahair, M. M., & Franklin, R. A. (2006). Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal, 8(9-10), 1775-1789. doi:10.1089/ars.2006.8.1775
    連結:
  70. McFadyen, M. C., Breeman, S., Payne, S., Stirk, C., Miller, I. D., Melvin, W. T., & Murray, G. I. (1999). Immunohistochemical localization of cytochrome P450 CYP1B1 in breast cancer with monoclonal antibodies specific for CYP1B1. J Histochem Cytochem, 47(11), 1457-1464.
    連結:
  71. Meredith, J. E., Jr., Fazeli, B., & Schwartz, M. A. (1993). The extracellular matrix as a cell survival factor. Mol Biol Cell, 4(9), 953-961.
    連結:
  72. Miyata, Y., Tamaru, S., Tanaka, T., Tamaya, K., Matsui, T., Nagata, Y., & Tanaka, K. (2013). Theflavins and Theasinensin A Derived from Fermented Tea Have Antihyperglycemic and Hypotriacylglycerolemic Effects in KK-Ay Mice and Sprague–Dawley Rats. J Agric Food Chem, 61(39), 9366-9372. doi:10.1021/jf400123y
    連結:
  73. Moss, R., Mao, Q., Taylor, D., & Saucier, C. (2013). Investigation of monomeric and oligomeric wine stilbenoids in red wines by ultra-high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom, 27(16), 1815-1827. doi:10.1002/rcm.6636
    連結:
  74. Ohori, M., Kinoshita, T., Yoshimura, S., Warizaya, M., Nakajima, H., & Miyake, H. (2007). Role of a cysteine residue in the active site of ERK and the MAPKK family. Biochem Biophys Res Commun, 353(3), 633-637. doi:10.1016/j.bbrc.2006.12.083
    連結:
  75. Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., & Weinberg, R. A. (2008). Loss of E-Cadherin Promotes Metastasis via Multiple Downstream Transcriptional Pathways. Cancer Res, 68(10), 3645-3654. doi:10.1158/0008-5472.can-07-2938
    連結:
  76. Pan, M. H., Chiou, Y. S., Chen, W. J., Wang, J. M., Badmaev, V., & Ho, C. T. (2009). Pterostilbene inhibited tumor invasion via suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Carcinogenesis, 30(7), 1234-1242. doi:10.1093/carcin/bgp121
    連結:
  77. Paul, S., Rimando, A. M., Lee, H. J., Ji, Y., Reddy, B. S., & Suh, N. (2009). Anti-inflammatory action of pterostilbene is mediated through the p38 mitogen-activated protein kinase pathway in colon cancer cells. Cancer Prev Res (Phila), 2(7), 650-657. doi:10.1158/1940-6207.capr-08-0224
    連結:
  78. Piotrowska, H., Kucinska, M., & Murias, M. (2012). Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res, 750(1), 60-82. doi:10.1016/j.mrrev.2011.11.001
    連結:
  79. Pollock, C. B., Shirasawa, S., Sasazuki, T., Kolch, W., & Dhillon, A. S. (2005). Oncogenic K-RAS Is Required to Maintain Changes in Cytoskeletal Organization, Adhesion, and Motility in Colon Cancer Cells. Cancer Res, 65(4), 1244-1250. doi:10.1158/0008-5472.can-04-1911
    連結:
  80. Potter, G. A., Patterson, L. H., Wanogho, E., Perry, P. J., Butler, P. C., Ijaz, T., . . . Burke, M. D. (2002). The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. British Journal of Cancer, 86(5), 774-778. doi:10.1038/sj.bjc.6600197
    連結:
  81. Prudkin, L., Liu, D. D., Ozburn, N. C., Sun, M., Behrens, C., Tang, X., . . . Wistuba, II. (2009). Epithelial-to-mesenchymal transition in the development and progression of adenocarcinoma and squamous cell carcinoma of the lung. Mod Pathol, 22(5), 668-678. doi:10.1038/modpathol.2009.19
    連結:
  82. Qiu, J., Kitamura, Y., Miyata, Y., Tamaru, S., Tanaka, K., Tanaka, T., & Matsui, T. (2012). Transepithelial Transport of Theasinensins through Caco-2 Cell Monolayers and Their Absorption in Sprague–Dawley Rats after Oral Administration. J Agric Food Chem, 60(32), 8036-8043. doi:10.1021/jf302242n
    連結:
  83. Ragab, A. S., Van Fleet, J., Jankowski, B., Park, J. H., & Bobzin, S. C. (2006). Detection and quantitation of resveratrol in tomato fruit (Lycopersicon esculentum Mill.). J Agric Food Chem, 54(19), 7175-7179. doi:10.1021/jf0609633
    連結:
  84. Reddy, K. B., Nabha, S. M., & Atanaskova, N. (2003). Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev, 22(4), 395-403.
    連結:
  85. Reinisalo, M., Karlund, A., Koskela, A., Kaarniranta, K., & Karjalainen, R. O. (2015). Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases. Oxid Med Cell Longev, 2015, 340520. doi:10.1155/2015/340520
    連結:
  86. Rimando, A. M., Kalt, W., Magee, J. B., Dewey, J., & Ballington, J. R. (2004). Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem, 52(15), 4713-4719. doi:10.1021/jf040095e
    連結:
  87. Rodriguez-Bonilla, P., Lopez-Nicolas, J. M., Mendez-Cazorla, L., & Garcia-Carmona, F. (2011). Development of a reversed phase high performance liquid chromatography method based on the use of cyclodextrins as mobile phase additives to determine pterostilbene in blueberries. J Chromatogr B Analyt Technol Biomed Life Sci, 879(15-16), 1091-1097. doi:10.1016/j.jchromb.2011.03.025
    連結:
  88. Rubin, M. A., Mucci, N. R., Figurski, J., Fecko, A., Pienta, K. J., & Day, M. L. (2001). E-cadherin expression in prostate cancer: a broad survey using high-density tissue microarray technology. Hum Pathol, 32(7), 690-697. doi:10.1053/hupa.2001.25902
    連結:
  89. Sahai, E., & Marshall, C. J. (2002). RHO-GTPases and cancer. Nat Rev Cancer, 2(2), 133-142. doi:10.1038/nrc725
    連結:
  90. Sajilata, M. G., Bajaj, P. R., & Singhal, R. S. (2008). Tea Polyphenols as Nutraceuticals. Comprehensive Reviews in Food Science and Food Safety, 7(3), 229-254. doi:10.1111/j.1541-4337.2008.00043.x
    連結:
  91. Samuels, Y., & Velculescu, V. E. (2004). Oncogenic Mutations of PIK3CA in Human Cancers. Cell Cycle, 3(10), 1221-1224. doi:10.4161/cc.3.10.1164
    連結:
  92. Sato, D., Shimizu, N., Shimizu, Y., Akagi, M., Eshita, Y., Ozaki, S., . . . Kubota, N. (2014). Synthesis of glycosides of resveratrol, pterostilbene, and piceatannol, and their anti-oxidant, anti-allergic, and neuroprotective activities. Biosci Biotechnol Biochem, 78(7), 1123-1128. doi:10.1080/09168451.2014.921551
    連結:
  93. Schaeffer, H. J., & Weber, M. J. (1999). Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol, 19(4), 2435-2444.
    連結:
  94. Shii, T., Miyamoto, M., Matsuo, Y., Tanaka, T., & Kouno, I. (2011). Biomimetic one-pot preparation of a black tea polyphenol theasinensin A from epigallocatechin gallate by treatment with copper(II) chloride and ascorbic acid. Chem Pharm Bull (Tokyo), 59(9), 1183-1185.
    連結:
  95. Simon, C., Simon, M., Vucelic, G., Hicks, M. J., Plinkert, P. K., Koitschev, A., & Zenner, H. P. (2001). The p38 SAPK pathway regulates the expression of the MMP-9 collagenase via AP-1-dependent promoter activation. Exp Cell Res, 271(2), 344-355. doi:10.1006/excr.2001.5374
    連結:
  96. Stetler-Stevenson, W. G. (1990). Type IV collagenases in tumor invasion and metastasis. Cancer Metastasis Rev, 9(4), 289-303.
    連結:
  97. Stetler-Stevenson, W. G. (2001). The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis. Surg Oncol Clin N Am, 10(2), 383-392, x.
    連結:
  98. Svajger, U., & Jeras, M. (2012). Anti-inflammatory effects of resveratrol and its potential use in therapy of immune-mediated diseases. Int Rev Immunol, 31(3), 202-222. doi:10.3109/08830185.2012.665108
    連結:
  99. Tanaka, T., Mine, C., Watarumi, S., Fujioka, T., Mihashi, K., Zhang, Y.-J., & Kouno, I. (2002). Accumulation of Epigallocatechin Quinone Dimers during Tea Fermentation and Formation of Theasinensins. Journal of Natural Products, 65(11), 1582-1587. doi:10.1021/np020245k
    連結:
  100. Tanaka, T., Watarumi, S., Matsuo, Y., Kamei, M., & Kouno, I. (2003). Production of theasinensins A and D, epigallocatechin gallate dimers of black tea, by oxidation–reduction dismutation of dehydrotheasinensin A. Tetrahedron, 59(40), 7939-7947. doi:http://dx.doi.org/10.1016/j.tet.2003.08.025
    連結:
  101. Tang, Y. L., & Chan, S. W. (2014). A review of the pharmacological effects of piceatannol on cardiovascular diseases. Phytother Res, 28(11), 1581-1588. doi:10.1002/ptr.5185
    連結:
  102. Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871-890. doi:10.1016/j.cell.2009.11.007
    連結:
  103. Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 7(2), 131-142. Retrieved from http://dx.doi.org/10.1038/nrm1835
    連結:
  104. Tokuşoǧlu, Ö., Ünal, M. K., & Yemiş, F. (2005). Determination of the Phytoalexin Resveratrol (3,5,4‘-Trihydroxystilbene) in Peanuts and Pistachios by High-Performance Liquid Chromatographic Diode Array (HPLC-DAD) and Gas Chromatography−Mass Spectrometry (GC-MS). J Agric Food Chem, 53(12), 5003-5009. doi:10.1021/jf050496+
    連結:
  105. Tolomeo, M., Grimaudo, S., Di Cristina, A., Roberti, M., Pizzirani, D., Meli, M., . . . Simoni, D. (2005). Pterostilbene and 3'-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int J Biochem Cell Biol, 37(8), 1709-1726. doi:10.1016/j.biocel.2005.03.004
    連結:
  106. Torii, S., Yamamoto, T., Tsuchiya, Y., & Nishida, E. (2006). ERK MAP kinase in G cell cycle progression and cancer. Cancer Sci, 97(8), 697-702. doi:10.1111/j.1349-7006.2006.00244.x
    連結:
  107. Tsai, P.-H., Kan, N.-B., Ho, S.-C., Liu, C.-C., & Lin, C.-C. (2005). Effects of Oolong Tea Supplementation on Lipid Peroxidation of Athletes at Rest and Post-exhaustive Exercise. Journal of Food Science, 70(9), S581-S585. doi:10.1111/j.1365-2621.2005.tb08332.x
    連結:
  108. Uekusa, Y., Kamihira-Ishijima, M., Sugimoto, O., Ishii, T., Kumazawa, S., Nakamura, K., . . . Nakayama, T. (2011). Interaction of epicatechin gallate with phospholipid membranes as revealed by solid-state NMR spectroscopy. Biochim Biophys Acta, 1808(6), 1654-1660. doi:10.1016/j.bbamem.2011.02.014
    連結:
  109. Uekusa, Y., Kamihira, M., & Nakayama, T. (2007). Dynamic behavior of tea catechins interacting with lipid membranes as determined by NMR spectroscopy. J Agric Food Chem, 55(24), 9986-9992. doi:10.1021/jf0712402
    連結:
  110. Vial, E., Sahai, E., & Marshall, C. J. (2003). ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer Cell, 4(1), 67-79. doi:10.1016/S1535-6108(03)00162-4
    連結:
  111. Vivanco, I., & Sawyers, C. L. (2002). The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer, 2(7), 489-501. doi:10.1038/nrc839
    連結:
  112. Wang, S. Y., Chen, C. T., Wang, C. Y., & Chen, P. (2007). Resveratrol content in strawberry fruit is affected by preharvest conditions. J Agric Food Chem, 55(20), 8269-8274. doi:10.1021/jf071749x
    連結:
  113. Weerawatanakorn, M., Hung, W.-L., Pan, M.-H., Li, S., Li, D., Wan, X., & Ho, C.-T. (2015). Chemistry and health beneficial effects of oolong tea and theasinensins. Food Science and Human Wellness, 4(4), 133-146. doi:http://dx.doi.org/10.1016/j.fshw.2015.10.002
    連結:
  114. Weinberg, R. A. (2013). The biology of cancer: Garland Science.
    連結:
  115. Wieder, T., Prokop, A., Bagci, B., Essmann, F., Bernicke, D., Schulze-Osthoff, K., . . . Henze, G. (2001). Piceatannol, a hydroxylated analog of the chemopreventive agent resveratrol, is a potent inducer of apoptosis in the lymphoma cell line BJAB and in primary, leukemic lymphoblasts. Leukemia, 15(11), 1735-1742.
    連結:
  116. Wittgen, H. G., & van Kempen, L. C. (2007). Reactive oxygen species in melanoma and its therapeutic implications. Melanoma Res, 17(6), 400-409. doi:10.1097/CMR.0b013e3282f1d312
    連結:
  117. Wolf, M. J., Hoos, A., Bauer, J., Boettcher, S., Knust, M., Weber, A., . . . Heikenwalder, M. (2012). Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell, 22(1), 91-105. doi:10.1016/j.ccr.2012.05.023
    連結:
  118. Xia, E.-Q., Deng, G.-F., Guo, Y.-J., & Li, H.-B. (2010). Biological Activities of Polyphenols from Grapes. International Journal of Molecular Sciences, 11(2), 622-646. doi:10.3390/ijms11020622
    連結:
  119. Yam, T. S., Shah, S., & Hamilton-Miller, J. M. T. (1997). Microbiological activity of whole and fractionated crude extracts of tea (Camellia sinensis), and of tea components. FEMS Microbiology Letters, 152(1), 169-174. doi:10.1111/j.1574-6968.1997.tb10424.x
    連結:
  120. Yang, Y., Lu, F., Wu, J., Wu, C., & Chang, C. (2004). THe protective effect of habitual tea consumption on hypertension. Archives of Internal Medicine, 164(14), 1534-1540. doi:10.1001/archinte.164.14.1534
    連結:
  121. Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev, 28(1-2), 15-33. doi:10.1007/s10555-008-9169-0
    連結:
  122. Yuan, T. L., & Cantley, L. C. (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene, 27(41), 5497-5510. Retrieved from http://dx.doi.org/10.1038/onc.2008.245
    連結:
  123. Zarubin, T., & Han, J. (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Res, 15(1), 11-18. Retrieved from http://dx.doi.org/10.1038/sj.cr.7290257
    連結:
  124. Zhang, G., Miura, Y., & Yagasaki, K. (1999). Effects of green, oolong and black teas and related components on the proliferation and invasion of hepatoma cells in culture. Cytotechnology, 31(1-2), 37-44. doi:10.1023/A:1008076306672
    連結:
  125. Zhang, J., Lu, Y., & Pienta, K. J. (2010). Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst, 102(8), 522-528. doi:10.1093/jnci/djq044
    連結:
  126. Zhang, S., Li, Z., Wu, X., Huang, Q., Shen, H.-M., & Ong, C.-N. (2006). Methyl-3-indolylacetate inhibits cancer cell invasion by targeting the MEK1/2-ERK1/2 signaling pathway. American Association for Cancer Research, 5(12), 3285-3293. doi:10.1158/1535-7163.mct-06-0240
    連結:
  127. Zhou, H., Zhang, Y., Chen, Q., & Lin, Y. (2016). AKT and JNK Signaling Pathways Increase the Metastatic Potential of Colorectal Cancer Cells by Altering Transgelin Expression. Dig Dis Sci, 61(4), 1091-1097. doi:10.1007/s10620-015-3985-1
    連結:
  128. Zhu, Y.-F., Yu, B.-H., Li, D.-L., Ke, H.-L., Guo, X.-Z., & Xiao, X.-Y. (2012). PI3K expression and PIK3CA mutations are related to colorectal cancer metastases. World Journal of Gastroenterology : WJG, 18(28), 3745-3751. doi:10.3748/wjg.v18.i28.3745
    連結:
  129. Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem, 253(1-2), 269-285.
  130. Dhillon, A. S., Hagan, S., Rath, O., & Kolch, W. (2007). MAP kinase signalling pathways in cancer. Oncogene, 26(22), 3279-3290. Retrieved from http://dx.doi.org/10.1038/sj.onc.1210421
  131. Hanahan, D., & Weinberg, Robert A. (2011). Hallmarks of Cancer: The Next Generation. Cell, 144(5), 646-674. doi:http://dx.doi.org/10.1016/j.cell.2011.02.013
  132. Ho, C.-T., Lin, J.-K., & Shahidi, F. (2008 ). Tea and Tea Products: Chemistry and Health-Promoting Properties: CRC Press.
  133. Mareel, M., Bracke, M., & Van Roy, F. (1995). Cancer metastasis: negative regulation by an invasion-suppressor complex. Cancer Detect Prev, 19(5), 451-464.
  134. McKay, J. A., Melvin, W. T., Ah-See, A. K., Ewen, S. W., Greenlee, W. F., Marcus, C. B., . . . Murray, G. I. (1995). Expression of cytochrome P450 CYP1B1 in breast cancer. FEBS Lett, 374(2), 270-272.
  135. Murray, G. I., Taylor, M. C., McFadyen, M. C., McKay, J. A., Greenlee, W. F., Burke, M. D., & Melvin, W. T. (1997). Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res, 57(14), 3026-3031.
  136. Papadatos-Pastos, D., Rabbie, R., Ross, P., & Sarker, D. (2015). The role of the PI3K pathway in colorectal cancer. Critical Reviews in Oncology/Hematology, 94(1), 18-30. doi:http://dx.doi.org/10.1016/j.critrevonc.2014.12.006
  137. Qian, B.-Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., . . . Pollard, J. W. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 475(7355), 222-225. doi:http://www.nature.com/nature/journal/v475/n7355/abs/nature10138-f1.2.html#supplementary-information
  138. Shahidi, F., & Naczk, M. (2004). Phenolics in Food and Nutraceuticals: CRC press.
  139. Shyy, Y.-J., Li, Y.-S., & Kolattukudy, P. E. (1990). Structure of human monocyte chemotactic protein gene and its regulation by TPA. Biochemical and Biophysical Research Communications, 169(2), 346-351. doi:http://dx.doi.org/10.1016/0006-291X(90)90338-N
  140. Timpl, M. A. a. R. (1986). Attachment of cells to basement membrane collagen type IV. The Journal of Cell Biology, 103(4), 1569-1575. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2114329/
  141. Tiwari, N., Gheldof, A., Tatari, M., & Christofori, G. (2012). EMT as the ultimate survival mechanism of cancer cells. Seminars in Cancer Biology, 22(3), 194-207. doi:http://dx.doi.org/10.1016/j.semcancer.2012.02.013
  142. Yang, T. T. C., & Koo, M. W. L. (1997). HYPOCHOLESTEROLEMIC EFFECTS OF CHINESE TEA. Pharmacological Research, 35(6), 505-512. doi:http://dx.doi.org/10.1006/phrs.1997.0176
  143. Zhou, J. H., Cheng, H. Y., Yu, Z. Q., He, D. W., Pan, Z., & Yang, D. T. (2011). Resveratrol induces apoptosis in pancreatic cancer cells. Chin Med J (Engl), 124(11), 1695-1699.