Title

應用退水曲線位移法建立臺灣集水區水源涵養量推估模式

Translated Titles

Creating A Estimating Model on Water Conservation through Rainfall on Watersheds in Taiwan with the Recession-curve Replacement Method

DOI

10.6342/NTU201603483

Authors

周子暐

Key Words

水源涵養量 ; 退水曲線移法 ; 集水區 ; 水源涵養量推估 ; 年降雨量 ; water conservation ; the Recession-curve Replacement Method ; watershed ; estimating model ; rainfall

PublicationName

臺灣大學森林環境暨資源學研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

邱祈榮

Content Language

繁體中文

Chinese Abstract

近年因氣候變遷所帶來旱澇加劇的影響之下,水資源能否穩定供給成為臺灣產官學界共同面臨的關鍵議題。臺灣水資源來源的主要途徑便是降雨,但山高水短的地理特性使得雨水很快便透過地表逕流進到大海中。如能強化並妥善利用臺灣土地水資源涵養能力,便成為一項亟待解決的課題。 在眾多計算水資源涵養量的方法中,Rorabaugh(1964)等人所提出之退水曲線位移法(the recession-curve replacement method)目前被大量應用在研究集水區河川流量與地下水補注關係上。本研究將以退水曲線位移法,先分析林業試驗所蓮華池研究中心所屬三號集水區之河川流量、降雨量與水資源涵養之間的關係,嘗試分析用雨量進行水源涵養量推估的可行性。再以該模式,針對臺灣其他大型集水區,各自建立該集水區之水源涵養量推估模型。 本研究透過迴歸分析,將所選用之八個集水區,各自分析出水源涵養量推估模型。其迴歸分析之R2介於0.1758到0.7321之間,大部分屬於中度相關。迴歸模型的冪次方面,大於一次方的集水區皆分佈在新竹以北地區,小於一次方的集水區皆分佈在新竹以南地區,可見迴歸模型的趨勢與臺灣南北兩地降雨模式的不同有極大關聯。但中低程度的相關性也顯示出光一年降雨量做為推估模型的因子並不足夠,推估模型與實際值之間依然有著一段解釋空間留待其他集水區條件作進一步分析。

English Abstract

In Taiwan, due to the Climate change, flood and drought, which brought more damage than usual, happen frequently in the recent years. Huge part of water supply comes from the river, which supplies by the rainfall but cannot be conserved well. Therefore, building a sustainable water resource system has been marked as a major issue on the list. “The Recession-curve Replacement Method”, which was published by Rorabaugh in 1964, has been used in researching the relation between the river flow and the groundwater-recharge in recent years. The study will use it as main tool to get the amount of water conservation in watershed no.3 in Lian-Hua-Chih Research Center, and analyze the relation between the rainfall and the amount of water conservation, trying to discuss the possibility of building an estimating model on water conservation. Further, the study will use this analyzing process to build the estimating models on the each watersheds in Taiwan. Through Regression analyze, the study has built the estimating models on each of the eight chosen watersheds. The R squares of the models were located between 0.1758 and 0.7321, and the equation which have the power less than 1 all belong to the watersheds that locates at the South of Hsinchu, and others which have the power more than 1 belong to the watersheds that locates at the North of Hsinchu. So we can figure out that climate conditions in different area of Taiwan have tremendous effect on the regression model. But the yearly rainfall is obviously not the only parameter when the relations between the model and the reality still remain low. There are still some key elements, which can make the model more available, remain undiscovered.

Topic Category 生物資源暨農學院 > 森林環境暨資源學研究所
生物農學 > 森林
生物農學 > 生物環境與多樣性
Reference
  1. 王素芬、林婉婷、張仲德、林登秋 (2012) 蓮華池試驗林梅雨降雨型態變遷與植生變動之分析。地理學報(66):67-86。
    連結:
  2. 林政勳 (2015) 台灣中部地區天然闊葉林生態服務價值之評估。國立臺灣大學森林環境暨資源學系碩士論文。
    連結:
  3. 陸象豫、黃良鑫、劉瓊霦 (2005) 檳榔園水文特性及其對環境的影響。中華水土保持學報36(1)19-27。
    連結:
  4. 陳明杰、曾俊偉 (2013) 契約林地混農林業使用可行性及對水資源涵養影響之研究。臺灣大學生物資源暨農學院實驗林研究報告27(3):171-188。
    連結:
  5. 陳信雄、王志豪、郭芯穎(2004)臺灣中部小型集水區降雨與逕流退水歷線之分析法研究。中華林學季刊,37(4):407-415。
    連結:
  6. 陳尉平 (2006) 應用河川流量歷線推估台灣地下水補注量。國立成功大學資源工程學系博士論文。
    連結:
  7. 陳怡如 (2008) 應用三種方法估算臺灣中部河川上游森林集水區滴水流量特性之研究。國立中興大學水土保持學系碩士論文。
    連結:
  8. 黃傭評 (2011) 應用河川流量歷線推估流域含水層參數及地下水補注量。國立成功大學資源工程學系博士論文。
    連結:
  9. 葉信富、陳進發、李振誥 (2005) 降雨入滲對坡地穩定影響之研究。中華水土保持學報36(2): 145-158。
    連結:
  10. Barnes, B.S. (1939) The structure of discharge recession curves, Transactions American Geophysical Union, 20(4):p.721-725.
    連結:
  11. Hydrology National Research Council of Canada, Jane 14-15.
    連結:
  12. Chow, Ven Te, (1964) Handbook of applied hydrolog. a compendium of water-resources technology. No. C25376.
    連結:
  13. Jasrotia, A.S., Abinash Majhi, Sunil Singh (2009) Water Balance Approach for Rainwater Harvesting using Remote Sensing and GIS Techniques, Jammu Himalaya, India. Water Resour Manage, 23:p. 3035–3055.
    連結:
  14. Matheron, G., (1978) Estimer et choisir: essai sur la pratique des probabilites. Ecole nationale superieure des mines de Paris.
    連結:
  15. Meyboom, P., (1961) Estimationg ground-water recharge from stream hydrographs: Journal of Geophysical Research, 66(4):p.1,203-1,214.
    連結:
  16. Rorabaugh, M. I., (1964) Estimation changes in bank storage and ground-water contribution to Streamflow. International Association of Scientific Hydrology, 63:p. 432-441.
    連結:
  17. Snyder, Franklin F., (1939) A conception of runoff‐phenomena. Eos, Transactions American Geophysical Union 20(4): p.725-738.
    連結:
  18. Strahler, A.N. (1952) Hypsometric(Area-Altitude) Analysis of Erosion Topography. Geological Society of American Bulletin, 63:p. 1117-1142.
    連結:
  19. Thiessen, A.H., (1911) Precipitation averages for large areas. Monthly Weather Review, 39(7): 1082-1084.
    連結:
  20. Thornthwaite, C. W. (1948) An approach toward a rational classification of climate. Geographical Review 38 (1):p. 55–94.
    連結:
  21. 中國國家林業局 (2008) 森林生態系統服務功能評估規範。中國國務院國家林業局。
  22. 李振誥、黃傭評、龔文瑞 (2011) 應用河川歷線推估流域導水係數。臺灣水利期刊58(4):35-44。
  23. 陸象豫 (2011) 森林涵養水資源的功能。林業研究專訊 18(5):48-49。
  24. 陳信雄 (1987) 森林在水資源涵養效益評估之研究。行政院農業委員會合作計畫。
  25. 時銀駿 (2010) 小黑山自然保護區森林生態系統服務功能及價值評估。林業調查規劃 35(8):90-94。
  26. Butler, S.S., (1957) Engineering Hydrology. Prentice Hall, Inc., Englewood Cliffs, NJ. 356 pp.
  27. Cheng, J.D. and Rekstn, D.E. and Hetherington, E.D., (1982) Low Flow Characteristics of Small High Elevation Forested Watersheds in the Okanagan Basin. Associate Committee on
  28. Healy, R.W., Scanlon, B.R. (2010) Estimating Groundwater Recharge. Cambridge University Press.
  29. Linsley, R.K., Jr., Kohler, M.A., and Paulhus, J.L.H., (1982), Hydrology for engineers(3d ed.):New York, McGraw-Hill, p.508.
  30. Mosley, M. P. and McKerchar, A. I. (1993) “STREAMFLOW,” Handbook of Hydrology edited by Maidment DR, McGraw-Hill, New York.
  31. Olmsted, Franklin Howard, and Allen Grant Hely., (1962) Relation between ground water and surface water in Brandywine Creek Basin, Pennsylvania, No.417-A.
  32. Rorabaugh, M. I., (1966) Exploration of methods of relating ground water to surface water, Columbia River basin-Second phase. U.S. Geological Survey Open-File Report: p. 66-117.
  33. Rutledge, A. T., (1991), A new method for calculation a mathematical expression for streamflow recession, in Ritter, W. F.,ed., Irrigation and Drainage: National Conference on Irrigation and Drainage, American Society of Civil Engineers, Irrigation and Drainage Division, Honolulu, Hawaii, 1991, Proceedings, p. 337-343.
  34. Rutledge, A. T., (1992) Methods of using streamflow records for estimating total and effective recharge in the Appalachian Valley and Ridge, Piedmont, and Blue Ridge physiograbhic
  35. provinces, in Hotchkiss, W. R. and Jonson, A. I., eds., Regional aquifer systems of the United States, aquifers of the southern and eastern states: American Water Resources Association Monograph Series, no. 17, p. 59-73.
  36. Rutledge, A. T., (1993) Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records: U. S. Geological Survey Water-Resources Investigations Report 93-4121, 45p.