Title

氣候變遷對坡地災害發生潛勢之影響評估

Translated Titles

Effects of Climate Change on the Slopeland Hazard Potentials

DOI

10.6342/NTU.2013.02237

Authors

楊智翔

Key Words

氣候變遷 ; 坡地災害發生潛勢 ; 崩塌 ; 土石流 ; Climate change ; Slopeland hazard potential ; Landslides ; Debris flows

PublicationName

臺灣大學生物環境系統工程學研究所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

博士

Advisor

范正成

Content Language

繁體中文

Chinese Abstract

就歷史資料的統計結果而言,目前氣候變遷導致之極端降雨事件的發生頻率確有逐漸上升的趨勢,而隨颱風、豪雨所觸發的坡地災害,如崩塌及土石流等之發生潛勢亦隨之提高。在面臨氣候變遷之趨勢已日漸顯著的同時,本研究期能藉由探討氣候變遷對高屏溪流域坡地災害發生潛勢之影響,提供後續相關研究或防災策略調整之參考。 為達成前述目的,本研究透過7種GCMs模式及3種未來情境,配合建置之崩塌及土石流發生潛勢評估模式,進行氣候變遷對研究區域內坡地災害發生潛勢之影響評估。研究結果顯示,CSMK3模式-A1B情境的模擬結果對區內未來防災衝擊較大且與近期(2005~2011年)區內實際災例的分布狀況較為相符。以此結果而言,研究區域內未來(2020~2039年)「極高」(發生頻率年小於5年)崩塌發生潛勢的面積與基期相比,增加175 km2 (70.8 %)之多;而「極高」土石流發生潛勢的溪流數量則是增加9條 (90.0 %)之多。另由區內防災潛勢分布圖之結果觀之,未來屬高防災潛勢區域的範圍有顯著增加的趨勢,本研究模擬未來短期土石流發生潛勢的結果與近年災例分佈情形相符,該結果應可提供高潛勢聚落劃設的參考。此外,現有避難處所位置與崩塌防災潛勢圖層套疊後發現,在未來有37處避難處所將處在高防災潛勢(崩塌)的區域內。此一結果說明未來在避難處所的選取方面,應綜合考量土石流災害影響範圍及崩塌潛勢區塊等兩項因素,才可使避難處所安全性的疑慮降至最低。

English Abstract

From the statistical results in the near history, the frequencies of extreme rainfall events induced by climate change have increased. Accordingly, potentials of slopeland hazards such as landslides and debris flows have also increased. To reflect the apparent trend of climate change, in this study, the effect of climate change on the hazard potentials of the slopelands in the watersheds of Kao-Ping stream was investigated; and the results are expected to be useful for related studies and disaster prevention strategies in the future. To achieve the above-mentioned goal, in this study, 7 GCMs models and 3 futrue scenarios were used and combined to establish two models for evaluating the hazard potentials of slopelands and analyzing the potentials of slopeland disasters in the future. The results showed that the impact of the CSMK3 model with the A1B scenario on the slopeland disaster potential in the study area was the most consistent with the distribution of the recently real disasters. For the simulated resultsof CSMK3 model with the A1B scenario (2020~2039), compared with the baseline (1980~1999), in the study area, the area of landslides with the return period less than 5 years increases by 175 km2 (70.8 %), and the number of potential debris flow torrents with the return period less than 5 years increases by 9 (90.0 %). From the potential distribution map of disaster prevention in the study area, it is found that there is a significant increasing trend for high potential of disaster prevention. It is also found that the evaluated potential of slopelands hazard in the periods of 2020 to 2039 is similar to that occurred in the recent years. Therefore, the findings in this study could be used as a reference for plotting the villages with high disaster potential. Apart from these, according to the maps of present shelter locations and high potential of disaster prevention (landslides) simulated in this study, the numbers of shelters located in the areas of high potential of disaster prevention (landslides) in the periods of 2020 to 2039 might increase up to 37. From this finding, it is suggested that while selecting the shelter locations in the future, potential zones of debris flows and landslides be considered so that the risks of shelter safety may be minimized.

Topic Category 生物資源暨農學院 > 生物環境系統工程學研究所
生物農學 > 生物科學
Reference
  1. 2. Caine, N., 1980. “The Rainfall Intensity Duration Control of Shallow Landslides and Debris Flows.” Geografiska Annaler Vol.62, 23-27.
    連結:
  2. 3. Can, T., Nefeslioglu, H.A.,Gokceoglu, C., Sonmez, H. and Duman, T.Y., 2005. “Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses.” Geomorphology,72 (1-4):250-271.
    連結:
  3. 4. Chang, K-T. and Chiang, S-H, 2009. “An Integrated Model for Predicting Rainfall-Induced Landslides”, Geomorphology, Vol.105, pp.366-373.
    連結:
  4. 5. Chang K.T., S. Chiang, and M. Hsu., 2007. “Modeling Typhoon- and Earthquake-Induced Landslides in a Mountainous Watershed using Logistic Regression”. Geomorphology, 89: 335-347.
    連結:
  5. 6. IPCC, 2007. “Climate Change 2007: the Physical Basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change”. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press: 1-996.
    連結:
  6. 7. Fan J. C., C. H. Yang, C. H. Liu and H. Y. Huang, 2013, “Assessment and validation of CLIGEN-simulated rainfall data for Northern Taiwan”. Paddy and Water Environment, Volume 11, Issue 1-4, pp 161-173
    連結:
  7. 9. Kiely, G., 1999. “Climate change in Ireland from precipitation and streamflow observation.” Advances in Water Resources, 23, pp.141-151.
    連結:
  8. 10. Kiely, G., J.D. Albertson, and M.B. Parlange, 1998. “Recent trends in diurnal variation of precipitation at Valentia on the west coast of Ireland,” Journal of Hydrology, 207, pp. 270-279.
    連結:
  9. 11. Matthias Jakob and Steven Lambert, 2009. “Climate change effects on landslides along the southwest coast of British Columbia”. Geomorphology 107 275–284.
    連結:
  10. 12. Michelle Bollschweiler and Markus Stoffel, 2010. “Changes and trends in debris flow frequency since AD1850: Result from the Swiss Alps”. The Holocene DOI: 10.1177/0959683610365942.
    連結:
  11. 16. Takahashi, T., 1991. “Debris Flow. Disaster Prevention Research institute”. Kyoto University, Kyoto, Japan.
    連結:
  12. 17. Wieczorek, G. F., 1987.“Effect of rainfall intensity and duration on the debris flows in central Santa Cruz Mountains”. California, Geological Society of America Reviews in Engineering Geology, 7, 93-104.
    連結:
  13. 18. Zhang, Y., Liu, B., Wang, Z., Zhu, Q., 2008. “Evaluation of CLIGEN for storm generation on the semiarid Loess Plateau in China”. CATENA. 73, 1–9.
    連結:
  14. 23. 李錫堤、費立沅、李錦發、李彥良、林銘郎、董家鈞、張瓊文,2009,「高屏溪流域之山崩土石流災害潛勢分析」,流域地質與坡地災害研討會。
    連結:
  15. 24. 范正成、吳明峰、彭光宗,1999,「豐丘土石流發生臨界降雨線之研究」,地工技術,74:39-46。
    連結:
  16. 25. 范正成、吳明峰,2001,「一級溪流土石流危險因子及其與臨界降雨線之關係」,中華水土保持學報,32(3):44-53。
    連結:
  17. 27. 范正成、童慶斌,2011,「氣候變遷對高屏溪流域坡地災害發生潛勢之影響評估」,行政院農業委員會水土保持局。
    連結:
  18. 28. 國家災害防救科技中心,2012,台灣氣候變遷推估與資訊平台建置計畫。
    連結:
  19. 29. 張石角,1987,山坡地潛在危險之預測及其在環境影響評估之應用,中華水土保持學報,18(2): p.41-62。
    連結:
  20. 31. 陳建忠、顧承宇、張怡文、許世孟、陳耐錦、溫惠鈺,2010,「氣候變遷下極端降雨引致廣域坡地災害評估技術之研究」,內政部建築研究所協同研究報告。
    連結:
  21. 33. 曾奕超,2004,「土石流發生降雨地文綜合警戒指標之研究」,成功大學水利及海洋工程研究所碩士論文。
    連結:
  22. 34. 傅裕盛,2004,模糊理論應用於土石流危險度分析之研究,國立成功大學水利及海洋工程研究所碩士論文。
    連結:
  23. 35. 詹錢登,2003,「土石流降雨警戒模式及警戒基準值之改善研究」,水土保持科技與研發展望研討會,4-1~4-15。
    連結:
  24. 38. 劉哲欣,2009,「利用降雨及地下水水質資料進行土石流發生之監測及分析」,國立臺灣大學生物環境系統工程所博士論文。
    連結:
  25. 1. Aldridge, C.H., 1999. “Discerning Landslide Hazard Using a Rough Set Based Geographic Knowledge Discovery Methodology”. In Proceedings: Eleventh Annual Colloquium of the Spatial Information Research Centre. P.A. Whigham (ed). 13 - 15 Dec, Dunedin, New Zealand. University of Otago, ISBN 1877139181. pp. 251-266.
  26. 8. Keefer, D.K., R.C.Wilson, R.K. Mark, E.E. Brabb, W.M.Brown, S.D. Ellen, E.L. Harp, G.F.Wieczorek, C.S. Alger, and R.S Zatkin., 1987. “Real-Time Landslide Warning During Heavy Rainfall”. Science, Vol.238, 921-925.
  27. 13. Nakicenovic N, Swart R (eds), 2000.”Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change.” Cambridge University Press: Cambridge, UK and New York, 570.
  28. 14. Nicks, A. D., L. J. Lane and G. A. Gander, 1995. “Weather generator. USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation, NSERL Report # 10, D.C. Flanagan and M.A. Nearing, Eds.”. NSERL West Lafayette, IN: USDA-ARS National Soil Erosion Research Laboratory, 2.1–2.22.
  29. 15. Sidle, R. C.., 2006. “Landslides and surface erosion from roads – experiences in Asia. In: VI Simpósio Nacional de Geomorfologia”. Regional Conference on Geomorphology, Vol. I, Abstracts: 302, Goiânia, Brazil.
  30. 19. 中央地質調查所,2010,易淹水地區上游集水區地質調查與資料庫建置計畫。
  31. 20. 行政院國家科學委員會,2011,「台灣氣候變遷科學報告」。
  32. 21. 行政院經濟部水利署,2010,水文年報。
  33. 22. 朱聖心,2001,「應用地理資系統製作地震及降雨所引致之山崩危險圖」,台灣大學土木工程研究所碩士論文。
  34. 26. 范正成、楊智翔、劉哲欣、廖雯雯、連琮勛,2008,「未來氣候變遷對台灣北部地區降雨沖蝕指數影響之研究」,九十七年度農業工程研討會,台北市。
  35. 30. 陳振華,潘國樑,1985,「臺北市山坡地住宅區環境地質調查研究」,工研院能源與礦業研究所報告,第229 號。
  36. 32. 陳嬑璇,2002,「溪頭地區山崩潛感圖製作研究」,國立臺灣大學土木工程研究所碩士論文。
  37. 36. 楊智堯,1999,「類神經網路於邊坡破壞潛能分析之應用研究」,國立成功大學土木工程研究所碩士論文。
  38. 37. 劉哲欣,2000,「土石流潛在勢能及預警之研究」,國立台灣大學農業工程研究所碩士論文。
  39. 39. 劉紹臣、符淙斌、許乾忠、陳正平、吳福婷,2009,「溫室效應影響下的全球極端降雨變化」,中央研究院環境變遷研究中心。
  40. 40. 謝正倫,1991,「土石流預警系統之研究」,成大水工試驗所,研究試驗報告第130號。
  41. 41. 顏月珠,1992,實用統計方法:圖解與實例,三民出版社。
  42. 42. 瀨尾克美、橫部幸裕,1978,「土砂害(主に土石流的被害)と降雨量について」,新砂防,Vol.108,14-18。
Times Cited
  1. 黃雅喬(2015)。崩塌潛勢分析方法之研究-以高屏溪流域為例。臺灣大學土木工程學研究所學位論文。2015。1-87。 
  2. 周映承(2017)。以敏感度分析探討大規模崩塌潛勢模式之應用研究。中興大學水土保持學系所學位論文。2017。1-65。