Title

奈米矽線場效電晶體在生化研究的應用: 1.極高靈敏度且具多次使用性之H5N2禽流感病毒偵測器 2.神經/電晶體介面整合

Translated Titles

Application of silicon nanowire field-effect transistor biosensor on biochemical study: 1. Ultra-highly sensitive and reusable H5N2 influenza virus sensor 2.Interfacing neurons with a transistor

DOI

10.6342/NTU.2010.02444

Authors

吳子珩

Key Words

奈米矽線場效應電晶體 ; 生物感測器 ; 禽流感病毒 ; 神經 ; 改質 ; Silicon nanowire field-effect transistor ; Avian influenza virus ; neuron ; PDMS

PublicationName

臺灣大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

陳逸聰

Content Language

繁體中文

Chinese Abstract

本論文的核心目標為以奈米矽線場效電晶體 (Silicon nanowire field-effect transistor, SiNW-FET)研究並解決重要的生物議題。內文包含兩個部份: 第一部份,我們以可重複使用的奈米矽線場效電晶體偵測器成功的偵測10-12 M到10-17 M 等極稀的禽流感病毒樣品。透過一系列的實驗,包括以免疫螢光實驗以及電訊號控制實驗,我們證明以雙硫鍵進行交聯抗體的方式,不僅可以固定H5N2單株抗體,更可以使元件具重複使用性。利用原子力顯微鏡的掃描實驗則顯示,元件最低可測到單一顆病毒貼附於奈米矽線之訊號,並可和過往文獻測得之最低極限比較。我們也將元件置於未純化的尿囊液病毒樣品中進行偵測,結果顯示元件可以在複雜環境下工作,大大提昇了元件的實際醫療意義。對於元件能夠在複雜環境下工作,我們認為與單株抗體的專一性以及抗體在表面的排列方式有很大關係。另外,由於元件偵測飛莫耳 (Femtomolar, fM)以及阿托莫耳 (attomolar, aM)濃度的訊號收集時間 (Signal Collection Time, SCT)過短,我們在傳統對流、擴散項外再加入電動力來計算元件的質量傳輸過程。結果顯示,縮短的SCT可能與病毒所帶高價電數有關。經過模型計算,病毒約帶有-970的價電數與許多文獻所提之數值相當接近。 論文的第二部分,則是展示神經定位實驗的初步成果。在這個部分,我們希望以電漿搭配化學改質使得二甲基氧基矽烷 (Poly(dimethyl)siloxane, PDMS)成為親水材料,並在PDMS基材上進行神經細胞的養殖。透過自行架設的接觸角量測儀,我們發現在0.2 mtorr之10 W氧氣電漿處理下,PDMS可以成功的被改質為親水性基材。而在0.2 mtorr到2 mtorr的區間內,氧氣壓力對於改質效果沒有影響。接觸角量測也顯示,3-胺丙基三甲氧基矽烷 (3-aminopropyltrimethoxysilane, APTMS)的化學改質更進一步的降低了改質後的疏水還原 (Hydrophobic recovery)的速率,使得基材更適合長期的神經細胞培養。最後,利用X光光電子能譜儀的分析結果,我們探討了修飾參數之改善方向並且展示了一些細胞養殖的結果。

English Abstract

The bulk of this master thesis is dedicated in studying various biological issues by silicon nanowire field-effect transistor. This study can be divided into two major part: In the first part, we aim to establish a reusable and highly sensitive H5N2 avian influenza virus sensor by disulfide bond based surface modification method. Currently, we are able to detect virus sample of concentration ranging from picomolar to attomolar. The sensitivity and reusability is proven to be genuine through many control experiments, including fluorescence imaging, atomic force microscopy and electrical measurement from silicon nanowire field-effect transistor device. From experimental observation we found that device can detect virus sample even under relatively short debye length condition. We attribute the reason for such sensitivity to the random orientation of surface modified antibody. We also find that signal collection time of measured data is apparently much faster than predicted by convection diffusion mass transfer model. Electrophretic migration is proposed here to account for the enhanced mass transfer effect. As for the second part of the thesis, we aim to develop a technique that can precisely interface the neuron cells with silicon nanowire field-effect transistor active sensor area. Physical and chemical surface modification is applied to increase the hydrophilicity of poly(dimethyl)siloxane (PDMS). PDMS is first treated with 10W, 42 seconds of oxygen plasma, and then react with 3-amino(propyl)trimethoxysilane. The increase in PDMS hydrophilicity is measured by contact angle measurement and X-ray photoelectron microscopy. According to the results, surface modified PDMS possess moderate hydrophilicity which is suitable for subsequent cell culturing.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. 2. Suzuki, Y. Biol. Pharm. Bull. 2005, 28, 399.
    連結:
  2. 3. McDonald, N. J.; Smith, C. B.; Cox, N. J. J. Gen. Virol. 2007, 88, 3209.
    連結:
  3. 5. De Clercq, E. Nat. Rev. Drug Discovery 2006, 5, 1015.
    連結:
  4. 7. Patolsky, F.; Lieber, C. M. Mater. Today 2005, 8, 20.
    連結:
  5. 8. Patolsky, F.; Zheng, G. F.; Lieber, C. M. Nat. Protoc. 2006, 1, 1711.
    連結:
  6. 11. Nair, P. R.; Alam, M. A. Appl. Phys. Lett. 2006, 88.
    連結:
  7. 14. Gong, J. R. Small 2010, 6, 967.
    連結:
  8. 18. Wang, W. U.; Chen, C.; Lin, K. H.; Fang, Y.; Lieber, C. M. PNAS 2005, 102, 3208.
    連結:
  9. 28. Levitt, A. P. Whisker Technology; John Wiley and Sons, Inc., 1970.
    連結:
  10. 32. Hermanson, G. T. Bioconjugate techniques; Academic Press: Boston, 2008.
    連結:
  11. 33. Senkevich, J. J.; Yang, G. R.; Lu, T. M. Colloids Surf., A 2002, 207, 139.
    連結:
  12. 35. Nair, P. R.; Alam, M. A. Nano Lett. 2008, 8, 1281.
    連結:
  13. 36. Kim, A.; Ah, C. S.; Yu, H. Y.; Yang, J.-H.; Baek, I.-B.; Ahn, C.-G.; Park, C. W.; Jun, M. S.; Lee, S. Appl. Phys. Lett. 2007, 91, 103901.
    連結:
  14. 49. James, C. D.; Davis, R.; Meyer, M.; Turner, A.; Turner, S.; Withers, G.; Kam, L.; Banker, G.; Craighead, H.; Issacson, M.; Turner, J.; Shain, W. EEE Trans. Biomed. Eng. 2000, 47, 17.
    連結:
  15. 51. Bodas, D.; Khan-Malek, C. Microelectron. Eng., 83, 1277.
    連結:
  16. 52. Olander, B.; Wirsen, A.; Albertsson, A.-C. J. Appl. Polym. Sci. 2004, 91, 4098.
    連結:
  17. 53. Morra, M.; Occhiello, E.; Marola, R.; Garbassi, F.; Humphrey, P.; Johnson, D. J. Colloid Interface Sci. 1990, 137, 11.
    連結:
  18. 56. Bard, A. J.; Faulkner, L. R. Electrochemical methods : fundamentals and applications; Wiley: New York, 2001.
    連結:
  19. 58. Willey, M. J.; Reid, J.; West, A. C. Electrochem. Solid-State Lett. 2007, 10, D38.
    連結:
  20. 59. Gengenbach, T. R.; Griesser, H. J. Polymer 1999, 40, 5079.
    連結:
  21. 61. Alexander, M. R.; Short, R. D.; Jones, F. R.; Stollenwerk, M.; Zabold, J.; Michaeli, W. J. Mater. Sci. 1996, 31, 1879.
    連結:
  22. 62. Taupenot, L. Curr Protoc Cell Biol 2007, Chapter 15, Unit 15 12.
    連結:
  23. 63. American Type Cell Collection, A.
    連結:
  24. 64. Ohsawa, K.; Murata, M.; Ohshima, H. Colloid Polym Sci 1986, 264, 1005.
    連結:
  25. 65. Bach, G. A.; Hollingsworth, A. D.; Koch, D. L. J. Colloid Interface Sci. 2002, 251, 208.
    連結:
  26. 1. Olsen, B.; Munster, V. J.; Wallensten, A.; Waldenstrom, J.; Osterhaus, A. D. M. E.; Fouchier, R. A. M. Science 2006, 312, 384.
  27. 4. http://gamapserver.who.int/mapLibrary/Files/Maps/Global_H5N1inHuma nCUMULATIVE_FIMS_20081216.png.
  28. 6. http://www.who.int/csr/disease/avian_influenza/guidelinestopics/en/index1.html; WHO.
  29. 9. M. Curreli, R. Z., F. N. Ishikawa, H. K. Chang, R. J. Cote, C. Zhou, and M. E. Thompson, IEEE Trans. Nanotechnol. 2008, 7, 651.
  30. 10. Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. PNAS 2004, 101, 14017.
  31. 12. Squires, T. M.; Messinger, R. J.; Manalis, S. R. Nat. Biotechnol. 2008, 26, 417.
  32. 13. Heaton, R. J.; Peterson, A. W.; Georgiadis, R. M. PNAS 2001, 98, 3701.
  33. 15. Sosnowski, R. G.; Tu, E.; Butler, W. F.; O’Connell, J. P.; Heller, M. J. PNAS 1997, 94, 1119.
  34. 16. Oddy, M. H.; Santiago, J. G.; Mikkelsen, J. C. Anal. Chem. 2001, 73, 5822.
  35. 17. Stern, E.; Vacic, A.; Rajan, N. K.; Criscione, J. M.; Park, J.; Ilic, B. R.; Mooney, D. J.; Reed, M. A.; Fahmy, T. M. Nat. Nanotechnol. 2009, 5, 138.
  36. 19. Lin, T.-W.; Hsieh, P.-J.; Lin, C.-L.; Fang, Y.-Y.; Yang, J.-X.; Tsai, C.-C.; Chiang, P.-L.; Pan, C.-Y.; Chen, Y.-T. PNAS 2010, 107, 1047.
  37. 20. Gao, X. P. A.; Zheng, G.; Lieber, C. M. Nano Lett. 2009, 10, 547.
  38. 21. Hafeman, D.; Parce, J.; McConnell, H. Science 1988, 240, 1182.
  39. 22. Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F.; Lieber, C. M. Science 2006, 313, 1100.
  40. 23. Stern, E.; Steenblock, E. R.; Reed, M. A.; Fahmy, T. M. Nano Lett. 2008, 8, 3310.
  41. 24. Bunimovich, Y. L.; Shin, Y. S.; Yeo, W.-S.; Amori, M.; Kwong, G.; Heath, J. R. J. Am. Chem. Soc. 2006, 128, 16323.
  42. 25. Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner-Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahmy, T. M.; Reed, M. A. Nature 2007, 445, 519.
  43. 26. Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Nat. Biotechnol. 2005, 23, 1294.
  44. 27. Cui, Y.; Zhong, Z.; Wang, D.; Wang, W. U.; Lieber, C. M. Nano Lett. 2003, 3, 149.
  45. 29. Chen, C.-C.; Yeh, C.-C.; Chen, C.-H.; Yu, M.-Y.; Liu, H.-L.; Wu, J.-J.; Chen, K.-H.; Chen, L.-C.; Peng, J.-Y.; Chen, Y.-F. J. Am. Chem. Soc. 2001, 123, 2791.
  46. 30. Wang, D.; Dai, H. ChemInform 2003, 34.
  47. 31. Wu, Y.; Yan, H.; Huang, M.; Messer, B.; Song, J. H.; Yang, P. Chem. Eur. J. 2002, 8, 1260.
  48. 34. Harris, L. J.; Larson, S. B.; Hasel, K. W.; McPherson, A. Biochemistry 1997, 36, 1581.
  49. 37. Li, C.; Curreli, M.; Lin, H.; Lei, B.; Ishikawa, F. N.; Datar, R.; Cote, R. J.; Thompson, M. E.; Zhou, C. J. Am. Chem. Soc. 2005, 127, 12484.
  50. 38. Berg, H. C. Random walks in biology; Princeton University Press: Princeton, N.J., 1983.
  51. 39. Stern, E.; Wagner, R.; Sigworth, F. J.; Breaker, R.; Fahmy, T. M.; Reed, M. A. Nano Lett. 2007, 7, 3405.
  52. 40. Lud, S. Q.; Nikolaides, M. G.; Haase, I.; Fischer, M.; Bausch, A. R. ChemPhysChem 2006, 7, 379.
  53. 41. Lin, S.-P.; Pan, C.-Y.; Tseng, K.-C.; Lin, M.-C.; Chen, C.-D.; Tsai, C.-C.; Yu, S.-H.; Sun, Y.-C.; Lin, T.-W.; Chen, Y.-T. Nano Today 2009, 4, 235.
  54. 42. Poghossian, A.; Ingebrandt, S.; Offenhausser, A.; Schoning, M. J. Semin. Cell Dev. Biol. 2009, 20, 41.
  55. 43. Schafer, S.; Eick, S.; Hofmann, B.; Dufaux, T.; Stockmann, R.; Wrobel, G.; Offenhausser, A.; Ingebrandt, S. Biosens. Bioelectron. 2009, 24, 1201.
  56. 44. Cohen-Karni, T.; Qing, Q.; Li, Q.; Fang, Y.; Lieber, C. M. Nano Lett. 2010, 10, 1098.
  57. 45. Qing, Q.; Pal, S. K.; Tian, B.; Duan, X.; Timko, B. P.; Cohen-Karni, T.; Murthy, V. N.; Lieber, C. M. PNAS 2010, 107, 1882.
  58. 46. Timko, B. P.; Cohen-Karni, T.; Yu, G.; Qing, Q.; Tian, B.; Lieber, C. M. Nano Lett. 2009, 9, 914.
  59. 47. Sorribas, H.; Padeste, C.; Tiefenauer, L. Biomaterials 2002, 23, 893.
  60. 48. Jun, S. B.; Hynd, M. R.; Dowell-Mesfin, N.; Smith, K. L.; Turner, J. N.; Shain, W.; Kim, S. J. J. Neurosci. Methods 2007, 160, 317.
  61. 50. Abbasi, F.; Mirzadeh, H.; Katbab, A.-A. Polym. Int. 2001, 50, 1279.
  62. 54. Seguin, C.; McLachlan, J. M.; Norton, P. R.; Lagugne-Labarthet, F. Appl. Surf. Sci. 2010, 256, 2524.
  63. 55. Wang, D.; Oleschuk, R. D.; Horton, J. H. Langmuir 2007, 24, 1080.
  64. 57. Newman, J. S. T.-A., K. E. Electrochemical Systems; J. Wiley and Sons, Hoboken, 2004.
  65. 60. Berjoan, R.; Biche, E.; Perarnau, D.; Roualdes, S.; Durand, J. J. Phys. IV France 1999, 09, Pr8.
  66. 66. Weiping, Q.; Bin, X.; Lei, W.; Chunxiao, W.; Zengdong, S.; Danfeng, Y.; Zuhong, L.; Yu, W. J. Inclusion Phenom.Macrocyclic Chem. 1999, 35, 419.