Translated Titles

Adaptive management on the wintering habitat of common teals (Anas crecca) in Hwajiang estuarine wetland





Key Words

感潮濕地 ; 小水鴨 ; 度冬 ; 棲地適合度指標 ; 復育 ; 適應性管理 ; Common Teal ; Wintering waterfowl ; Estuarine wetland ; Habitat suitability Index ; Rehabilitation ; Adaptive management



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本研究整合生態學與水利學觀點,以棲地適合度指標模式(HSI model)量化小水鴨喜好之度冬棲地條件,建置一套適用於感潮濕地之小水鴨度冬棲地適應性管理模式。華江濕地為東亞小水鴨重要度冬棲地之一,惟近年來受到自然營力及人為干擾,環境劇烈變遷。河床大幅回淤,植被面積也隨之快速擴增,使小水鴨喜好之灘地及水域面積大量減少。因此小水鴨度冬棲地復育及管理,為當前極為重要且迫切之課題。 本研究於2008年10月至2009年3月在華江濕地三個固定位置,進行22次小水鴨數量及棲息位置調查,共紀錄小水鴨3615隻次。同時調查高程、坡度及距植被最短距離等環境因子,以地理資訊系統記錄於5m×5m之數值地形網格。接著以單位努力收穫量的概念,繪製網格內單次調查小水鴨最大數量與環境因子關係之包絡線,作為各環境因子之適合度指標(SI)。以最小值法整合三個環境因子之適合度指標,建置棲地適合度指標(HSI)模式。分析結果顯示,小水鴨喜好低緩坡度、高低潮位間之高程及鄰近植被邊緣之棲地環境,其棲地之最適坡度介於0.7%至1.4%間,最適地表高程介於EL. 0.3m至EL. 0.7m間,最適距植被最短距離則為0 m至4m。另以網格內小水鴨最大數量與棲地適合度指標進行驗證,兩者成高度顯著相關,顯示本研究建立之小水鴨度冬棲地適合度指標模式具高度可靠性及實用性。本研究依據棲地適合度指標將本區之環境品質分為不良(0 -0.25)、普通(0.25-0.50)、良好(0.50-0.75)及最佳(0.75-1.0)等4個等級,最佳棲地的比例在新潮池、內河道及次潮溝分別為41.9%、17.4%及26.4%。 本研究以小水鴨度冬棲地適合度指標及量化之棲地特性研擬棲地復育原則,主要為坡度小於1.5%、高程於EL. 0.0m至EL. 0.5m間、在灘地營造潮池或潮溝,退潮時仍保有水域、距植被最短距離不超過25m、復育棲地寬度至少100m及長度至少250m、復育地點儘量於小水鴨主要棲息地附近,以增加適合棲地之連續性。規劃三個華江濕地復育方案,僅以復育地點為操縱變因,再以CCHE2D模式進行數值實驗,以分析不同復育地點之優劣。主要考量為造床流量條件下之減淤效益,模擬結果進一步計算水流底床剪應力分布,並假設水流底床剪應力愈大、淤積潛勢愈低、復育效果愈佳。分析結果顯示,位於華江濕地上游側之復育地點淤積趨勢相對較低,為較佳之復育地點。 本研究引用適應性管理之架構,以棲地適合度指標模式作為量化評估工具,建置華江濕地小水鴨度冬棲地適應性管理模式。此模式包括監測、評估及決策三部分,可作為華江濕地小水鴨度冬棲地復育及管理參考使用,並可供其他類似濕地之復育及永續管理參考。

English Abstract

This study aimed at constructing an adaptive management model for wintering habitat of Common Teal (Anas crecca) in Hwajiang Wetland. A habitat suitability index (HSI) was developed to quantify the physical environments of the Teals’ preferred habitat. The Hwajiang wetland is an important wintering site for migratory Common Teal, whose population has dramatically declined in recent years, due most likely to the persistent degradation of habitats in this wetland. Due to river morphology, the changes of sediment deposition and vegetation expansion, have reduced the available habitat for the wintering Teal. Therefore, the rehabilitation of the Teals’ habitat is urgently needed for a sustainable management in this wetland. Point-count surveys of the Common Teal were conducted at a tidal pool, an inner channel and a tidal creek in Hwajiang Wetland and Teals’ positions were recorded from October 2008 to March 2009. Twenty-two sets of data and 3615 counted individuals were collected. Three habitat variables, including slope, elevation and the distance to the nearest vegetation, were displayed on 5 m × 5 m grid cells and analyzed with GIS software. Suitability index (SI) values of habitat variables were determined using the envelop curve of maximum abundance of common teals versus the habitat variables. The results showed that Common Teal preferred habitats with gentle slopes, median elevations and areas close to vegetation. The abundance of the Common Teal was highest in the grid cells with slopes ranging from 0.7 to 1.4%, bed elevation varying from 0.3 to 0.7 m above the mean sea level, and distance to the nearest vegetation shorter than 4 m. The HSI model was constructed by calculating the minimum value of the three SIs, and the suitability map of wintering common teals was generated to represent an integrated map of habitat quality in the area. A simple regression analysis indicated that the HSI model is a reliable indicator as the maximum numbers of the Common Teal in each grid cell increased significantly with the HSI values. Four types of habitat conditions, poor, fair, good and excellent, were determined based on the HSI values. The proportions of excellent habitat were 41.9%, 17.4% and 26.4% in the tidal pool, the inner channel and the tidal creek, respectively. A principle of rehabilitation was derived from the HSI model, with slopes smaller than 1.5%, elevations between 0.0m and 0.5m, and distance of less 25 m to the nearest vegetation. The rehabilitation area should be larger than 100 m in width and 250 m in length and adjacent to the existing Teal habitat. Three rehabilitation scenarios were simulated and characterized based on field survey and the HSI model. In addition, a horizontal two dimension numerical model, CCHE2D, was employed to simulate bank-full flow characteristics such as water surface elevation, flow velocity, shear stress and so on. The bathymetry and vegetation cover were assumed the same while the location was different. The shear stress evaluation indicated that the rehabilitation of the most upstream location is the best scenario because it has the lowest sediment deposition rate and represents a minimum maintenance effort needed in the future. This study provided a foundation for determining potential habitats and information on how to mitigate a degraded wetland for the Common Teal. It encompassed the aspects of monitoring, evaluation, and decision making that would benefit future management plans directed toward the Common Teal and other waterfowl species in Taiwan. It also provided an adaptive management model for application to similar projects of wetland rehabilitation and sustainable management.

Topic Category 工學院 > 土木工程學研究所
工程學 > 土木與建築工程
  1. 2. 方偉達、薛怡珍、何一先,2008,河川匯流處低水護岸之生態影響現象─以華江雁鴨自然公園為例,國立臺南大學「環境與生態學報」第1卷第2期,pp.1-16。
  2. 6. 施上粟,2005,潮間帶濕地生態水理模式建置及量化之研究,國立台灣大學土木系博士論文。
  3. 33. Acuna R., Contreras, F., & Kerekes, J., 1994, Aquatic bird densities in two coastal lagoon systems in Chiapas State, Mexico, a preliminary assessment, Hydrobiologia, 279/280: 101–106.
  4. 34. Ariathurai, R., & Krone, R.B., 1976, Finite element model for cohesive sediment transport, Journal of the Hydraulics Division, ASCE, 102: 323-338.
  5. 35. Arzel, C., Elmberg, J., & Guillemain, M., 2007, A flyway perspective of foraging activity in Eurasian green-winged teal, Anas crecca crecca, Canadian Journal of Zoology, 85: 81-91.
  6. 36. Baker, M.C., 1979, Morphological correlates of habitat selection in a community of shorebirds (Charadriiformes), Oikos, 33: 121-126.
  7. 38. Bancroft, G.T., Gawlik, D.E., & Rutchey, K., 2002, Distribution of wading birds relative to vegetation and water depths in the Northern Everglades of Florida, USA. Waterbirds, 25: 265-277.
  8. 40. Bautista, L.M., Alonso, J.C., & Alonso, J.A., 1992, A 20-years study of wintering common crane fluctuations using time series analysis, Journal of Wildlife Management, 56: 563-572.
  9. 41. Boertmann, D., & Riget, F., 2006, Effects of changing water levels on numbers of staging dabbling ducks in a Danish wetland, Waterbirds, 29: 1-8.
  10. 42. Bolduc, F., & Afton, A.D., 2004, Relationships between wintering waterbirds and invertebrates, sediments and hydrology of coastal marsh ponds, Waterbirds, 27: 333-341.
  11. 44. Brooks, R.P., 1997, Improving habitat suitability index models, Wildlife Society Bulletin, 25:163–167.
  12. 45. Cao, L., Barter, M., & Lei, G., 2008, New Anatidae population estimates for eastern China: Implications for current flyway estimates, Biological Conservation, 141: 2301-2309.
  13. 48. Chase, R.P., 1979, Settling behavior of natural aquatic particulates, Limnology and Oceanography, 417-426.
  14. 49. Cheng, S.T., Hwang, G.W., Chen, C.P., Hou, W.S., & Hsieh, H.L., 2012, An integrative modeling approach to evaluate the performance of an oxygen enhancement device at the Hwajiang Wetland, Taiwan, Ecological Engineering, 42: 244-248.
  15. 56. Dolman, P.M., & Sutherland, W.J., 1995, The response of bird populations to habitat loss, IBIS, 137: S38-S46.
  16. 58. Erwin, R.M., Hatfield, J.S., Howe, M.Q., & Klugman, S.S., 1994, Waterbird use of saltmarsh ponds created for open water marsh management, Journal of Wildlife Management, 58: 516-524.
  17. 59. Euliss, N.H., & Harris, S.W., 1987, Feeding ecology of northern pintails and green-winged teal wintering in California, Journal of Wildlife Management, 51: 724-732.
  18. 61. Gaston, G.R., 1992, Green-winged teal ingest epibenthic meiofauna, Estuaries, 15:227–229.
  19. 62. Genard, M., & Lescourret, F., 1992, Modelling wetland habitats for species management: the case of teal (Anas crecca crecca) in the Bassin d’Arcachon (French Atlantic coast), Journal of Environmental Management, 34: 179-195.
  20. 63. Goss-Custard, J.D., 1980, Competition for food and interference among waders, Ardea, 68: 31-52.
  21. 64. Goss-Custard, J.D., Caldow, R.W.G., Clarke, R.T., Durell. S.E.A.L.V.D., & West, A.D., 1995, Consequences of habitat loss and change to populations of wintering migratory birds: Predicting the local and global effects from studies of individuals, IBIS 137(Suppl.).
  22. 65. Guillemain, M., Devineau, O., Brochet, A.L., Fuster, J., Fritz, H., Green, A.J., & Gauthier-Clerc, M., 2010, What is the spatial unit for a wintering teal Anas crecca? Weekly day roost fidelity inferred from nasal saddles in the Camargue, southern France, Wildlife Biology, 16: 215-220.
  23. 67. Gunderson, L.H., Holling, C.S., & Light, S.S., 1995, Barriers and ridges to the Renewal of Ecosystems and Institutions, Columbia University Press, New York.
  24. 68. Hattori, A., & Mae, S., 2001, Habitat use and diversity of waterbirds in a coastal lagoon around Lake Biwa, Japan, Ecological Research, 16: 543-553.
  25. 70. Huang, S.C., Shih, S.S., Ho, Y.S., Chen, C.P., & Hsieh, H.L., 2010, Restoration of Shorebird-roosting Mudflats by Partial Removal of Estuarine Mangroves in Northern Taiwan, Restoration Ecology. (DOI:10.1111/j.1516-100X. 2010. 00744. X)
  26. 72. Johnson, W.P., & Rohwer, F.C., 2000, Foraging behavior of green-winged teal and mallards on tidal mudflats in Louisiana, Wetlands, 20: 184-188.
  27. 73. Jowett, I.G., & Davey, A.J.H., 2007, A comparison of composite habitat suitability indices and generalized additive models of invertebrate abundance and fish presence-habitat availability, Transactions of the American Fisheries Society, 136: 428-444.
  28. 74. Julien, P.Y., 1998, Erosion and Sedimentation, Cambridge University Press, Cambridge, U.K..
  29. 76. Klaassen, M., 2002, Relationships between migration and breeding strategies in arctic breeding birds. In Avian migration. Edited by P. Berthold, E. Gwinner, and E. Sonnenschein. Springer-Verlag, Berlin.
  30. 77. Koizumi, N., Takemura, T., Okushima, S., Mori, A., & Ebihara, S., 2008, Evaluation of Habitat Potential for Field Gudgeon in Drainage Canals Using Habitat Suitability Indexes: a Case Study of Yatsu Paddy Fields, Chiba Prefecture, Japan ,Japan Agricultural Research Quarterly, 42 : 57 – 62.
  31. 79. Krone, R.B., 1962, Flumes Studies of the Transport of Sediment in Estuarial Shoaling Processes, Technical Report, Hydraulic Engineering Laboratory, University of California, Berkeley, California.
  32. 80. Larson, M.A., Dijak, W.D., Thompson, F.R.III, & Millspaugh, J.J., 2003, Landscape-level habitat suitability models for twelve species in southern Missouri, U.S. Department of Agriculture, Forest Service General Technical Report NC-233, North Central Research Station, St. Paul, Minnesota, USA.
  33. 81. Lauver, C.L., Busby, W.H., & Whistler, J.L., 2002, Testing a GIS model of habitat suitability for a declining grassland species, Environmental Management, 30 : 88-97.
  34. 85. Luan, X., Qu, Y., Li, D., Liu, S., Wang, X., Wu, B., & Zhu, C., 2011, Habitat evaluation of wild Amur tiger (Panthera tigris altaica) and conservation priority setting in north-eastern China, Journal of Wildlife Management, 92: 31-42.
  35. 86. Ma, Z., Cai, Y., Li, B., & Chen, J., 2010, Managing Wetland Habitats for Waterbirds-an international perspective, Wetlands, 30:15–27.
  36. 87. Mehta, A.J., Hayter, E.J., Parker, W.R., Krone, R.B., & Teeter, A.M., 1989, Cohesive sedimment transport. : process description, Journal of Hydraulic Engineering, ASCE, 115: 1076-1093.
  37. 88. Mehta, A.J., & Partheniades, E., 1975, An investigation of the depositionalproperties of flocculated fine sediments, Journal of Hydraulic Research, 12: 361-609.
  38. 91. Mitsch, W.J. & Gosselink, J.G., 2007, Wetland. 4th ed., John Wiley & Sons, New York.
  39. 92. Mitchell, J.R., Moser, M.E., & Kirby, J.S., 1989, Declines in midwinter counts of waders roosting on the Dee Estuary, Bird Study, 35: 191-198.
  40. 93. Ntiamoa-Baidu, Y., Piersma, T., Wiersma, P., Poot, M., Battley, P., & Gordon, C., 1998, Water depth selection, daily feeding routines and diets of waterbirds in coastal lagoons in Ghana, IBIS, 140: 89–103.
  41. 94. Olney, P.J.S., 1963, The food and feeding habits of teal Anas crecca, Proceedings of the Zoological Society of London, 140: 169-210.
  42. 95. Paquette, G.A., & Ankney, C.D., 1998, Diurnal time budgets of American Green winged Teal Anas crecca breeding in British Columbia, Wildfowl, 49: 186-193 .
  43. 97. Pease, M.L., Rose, R.K., & Butler, M.J., 2005, Effects of human disturbances on the behavior of wintering ducks, Wildlife Society Bulletin, 33: 103-112.
  44. 98. Poysa, H., 1983, Morphology-mediated niche organization in a guild of dabbling ducks, Ornis Scandinavica, 14: 317–326.
  45. 99. Rice, P.D., 1984, Habitat suitability index models: Dabbling ducks. U.S. Fish & Wildlife Service.
  46. 100. Rijn, V.L.C., 1984, Sediment Transport, Part II: Suspended Load Transport, Journal of Hydraulic Engineering, ASCE,110: 1613-1641.
  47. 108. Steyer, G.D., & Llewellyn, D.W., 2000, Coastal Wetlands Planning, Protection, and Restoration Act : A programmatic application of adaptive management, Ecological Engineering, 15: 385-395.
  48. 109. Storch, I., 2002, On spatial resolution in habitat models: can small-scale forest structure explain Capercaillie numbers? Conservation Ecology 6(6). ,http://www.consecol.org/vol6/iss1/art6.. Accessed 6 Aug 2007.
  49. 110. Sutherland, W.J., & Dolman, P.M., 1994, Combining behaviour and population dynamics with applications for predicting consequences of habitat loss, Proceedings of the royal society, London, Biological sciences, 255: 133-138.
  50. 111. Sutherland, W.J., & Goss-Custard, J.D., 1991, Predicting the consequences of habitat loss on shorebird populations, Proc. Int. Om. Congr. XX: 2199-2207.
  51. 112. Taft, O.W., Colwell, M.A., Isola, C.R., & Safran, R.J., 2002, Waterbird responses to experimental drawdown: implications for the multispecies management of wetland mosaics, Journal of Applied Ecology, 39: 987-1001.
  52. 113. Teisson, C., 1991, Cohesive Suspended Sediment Transport: Feasibility and Limitations of Numerical Modeling, Journal of Hydraulic Research, ASCE, 29: 755-769.
  53. 114. Thom, R.M., 2000, Adaptive management of coastal ecosystem restoration projects, Ecological Engineering, 15:365-372.
  54. 115. Tirpak, J.M., Jones-Farrand, D.T.III, Thompson, F.R., TWEDT, D.J., Baxter , C.K., Fitzgerald, J.A., & Uihlein, W.B.III., 2009, Assessing Ecoregional-Scale Habitat Suitability Index Models for Priority Landbirds, Journal of Wildlife Management, 73: 1307–1315.
  55. 116. Tuite, C.H., Hanson, P.R., & Owen, M., 1984, Some ecological factors affecting winter wildfowl distribution on inland waters in England and Wales, and the influence of water-based recreation, Journal of Applied Ecology, 21: 41-62.
  56. 117. USFWS., 1980a, Implementation of Habitat Evaluation Procedures, 100 ESM, U.S. Fish and Wildlife Service, Washington, DC.
  57. 118. USFWS., 1980b, Habitat as a Basis for Environmental Assessment, 101 ESM, U.S. Fish and Wildlife Service, Washington, DC.
  58. 119. USFWS., 1981, Standards for the Development of Habitat Suitability Index Models, 103 ESM, U.S. Fish and Wildlife Service, Washington, DC.
  59. 122. Vest, J.S., & Conover, M.R., 2011, Food habits of wintering waterfowl on the Great Salt Lake, Utah., Waterbirds, 34: 40-50.
  60. 123. Walter, C.S., 1997, Challenges in adaptive management of riparian and coastal ecosystems, Conserv. Ecol. [online]1(2): 1. Avaiable from the Internet, http://www.consecol.org/voll/iss2/art1.
  61. 124. Walters, C.J., & Holling, C.S., 1990, Large-scale management experiments and learning by doing, Ecology, 71: 2060– 2068.
  62. 1. 內政部營建署網頁資料,http://wetland-tw.tcd.gov.tw/drupal/node/90。
  63. 3. 吳健民,1991,泥沙運移學,中國土木水利工程學會,科技圖書股份有限公司,臺北。
  64. 4. 李培芬、柯佳吟、陳宛均、彭鈞毅、歐恒佑、林志融、羅敏莉、王金美、何一先、葉再富,2010,臺北市關渡、華江地區自然保育區域生態環境監測計畫成果報告書,臺北市政府委託研究計畫,臺北市。
  65. 5. 李鴻源、侯文祥,2009,淡水河大漢新店濕地復育與經營管理之研究-感潮溼地復育:水理、河相及溶氧改善之研究-子計畫一(1/3),行政院國家科學委員會專題研究計畫成果報告。
  66. 7. 施上粟,2006,淡水河江子翠地區河防安全及河川生態棲地檢討規劃,經濟部水利署第十河川局。
  67. 8. 施上粟、俞維昇、賴澄漂,2008,淡水河系河底淤泥分佈探討及再利用可行性評估,經濟部水利署第十河川局。
  68. 9. 郭一羽、陳盈曲,2004,海岸結構物附著生物HEP棲地模式研究,第一屆生態工程學術研討會,pp.271-288。
  69. 10. 陳炤杰,2003,七股地區水鳥覓食行為及棲地利用之研究,行政院國家科學委員會專題研究計畫成果報告。
  70. 11. 陳偉柏、柳文成、郭振泰,2008,應用顆粒追蹤模式預測顆粒性污染物於淡水河口之傳輸,台灣水利,56(1),pp.33-48。
  71. 12. 張瑞津、石再添、曾正雄、陳美鈴、高鵬飛,1989,淡水河下游感潮的研究,地理研究報告,13期。
  72. 13. 黃守忠、黃國文、施上粟、陳岳輝、陳章波、謝蕙蓮,2012,淡水河新北濕地之度冬雁鴨棲地營造與初期成效,第三屆台灣濕地生態系研討會,中央研究院,臺北。
  73. 14. 黃恔娉、施上粟2012,二重疏洪道通洪能力重新檢討(2/2),經濟部水利署第十河川局。
  74. 15. 葉克家,2011,石門水庫防淤策略對下游河道影響之評估研究,經濟部水利署北區水資源局。
  75. 16. 經濟部水利署,1982,台灣北部地區河川砂石資源調查報告書。
  76. 17. 經濟部水利署水利規劃試驗所,2010,台美合作案之技術引進及應用研究(2/4),國立臺灣大學。
  77. 18. 經濟部水利署水利規劃試驗所,2012,河川生物指標物種分析及其適合度曲線研究(3/3),行政院農業委員會特有生物研究保育中心。
  78. 19. 經濟部水利署北區水資源局,2006,石門水庫泥砂運移模擬及排淤方案之研究(2/2)。
  79. 20. 經濟部水利署第十河川局,2004,淡水河系河川情勢調查計畫(1/2),財團法人台灣水利環境科技研究發展教育基金會。
  80. 21. 經濟部水利署第十河川局,2005,淡水河系河川情勢調查計畫(2/2),財團法人台灣水利環境科技研究發展教育基金會。
  81. 22. 經濟部水利署第十河川局,2007,淡水河流域及河口海域基樁埋設大斷面水文測站測量成果報告書(淡水河、三峽河、疏洪道)。
  82. 23. 經濟部水利署第十河川局,2008,淡水河水系河川環境整體規劃-「淡水河水系現有防災設施水理分析檢討及因應措施研擬」。
  83. 24. 經濟部水資源局,1996,淡水河水工模型整建及臺北防洪計畫績效驗證試驗報告。
  84. 25. 臺北市政府工務局,2012,臺北市議會審定101年度工程預算單價http://pwbems.tcg.gov.tw/TPECS/Query/Query_CouncilPrice.aspx?Kind=1。
  85. 26. 錢寧、張仁、周至德,1987,河床演變學,科學出版社。
  86. 27. 錢寧、萬兆惠,1981,泥砂運動力學,科學出版社。
  87. 28. 謝蕙蓮、李鴻源、侯文祥、盧堅富、范義彬,2009,淡水河大漢新店濕地復育與經營管理之研究(1/3),行政院國家科學委員會成果報告。
  88. 29. 謝蕙蓮、李鴻源、侯文祥、盧堅富、范義彬,2010,淡水河大漢新店濕地復育與經營管理之研究(2/3),行政院國家科學委員會成果報告。
  89. 30. 謝蕙蓮、李鴻源、侯文祥、盧堅富、范義彬,2011,淡水河大漢新店濕地復育與經營管理之研究(3/3),行政院國家科學委員會成果報告。
  90. 31. 謝蕙蓮、施上粟,2006,淡水河系紅樹林濕地疏伐可行性評估研究(1/2),經濟部水利署水利規劃試驗所。
  91. 32. 謝蕙蓮、施上粟,2007,淡水河系紅樹林濕地疏伐可行性評估研究(2/2),經濟部水利署水利規劃試驗所。
  92. 37. Baldassarre, G.A., Paulus, S.L., Tamisier, A., & Titman, R.D., 1988, Workshop summary: techniques for timing activities of wintering waterfowl, In M.W Weller(ed), waterfowl in winter, pp.181-188. University of Minnesota Press, Minneapolis.
  93. 39. Barras, J.A., Bourgeois, P.E., & Handley, L.R., 1994, Land loss in coastal Louisana 1956-1990, National Biological survey, National Wetlands Research Center Open Report 94-01, 4 p.
  94. 43. Bovee, K.D., Lamb, B.L., Bartholow, J.M., Stalnaker, C.B., Taylor, J., & Henriksen, J., 1998, Stream habitat analysis using the instream flow incremental methodology: U.S. Geological Survey Information and Technology Report 1998-0004, 130 p.
  95. 46. Carboneras, C., 1992, Family Anatidae (Ducks, Geese and Swans). In: del Hoyo, Josep; Elliott, Andrew & Sargatal, Jordi (eds.): Handbook of Birds of the World (Volume 1: Ostrich to Ducks): 536-629.
  96. 47. Castleberry, D.T., Cech, J.J.Jr., Erman, D.C., Hankin, D., Healey, M., Kondolf, G.M., Mangel, M., Mohr, M., Moyle, P.B., Nielsen, J., Speed, T.P., & Williams, J.C., 1996, Uncertainty and instream flow standards, Fisheries, 21: 20-21.
  97. 50. Chow, V.T., 1959, Open-channel hydraulics, McGraw-Hill, New York.
  98. 51. Chow, V.T., 1988, Applied hydrology, McGraw-Hill book company, Singapore.
  99. 52. Cole, C.A., & Smith, R.L., 1983, Habitat suitability indices for monitoring wildlife populations- an evaluation. Transactions of the North American Wildlife and Natural Resources Conference, 48:367–375.
  100. 53. Cole, C.A., & LeFebvre, E.A., 1989, Perceptions of the habitat evaluation procedures: a survey of wildlife professionals, Transactions of Illinois State Academy of Science, 82: 151-158.
  101. 54. Cook, J.G., & Irwin, L.L., 1985, Validation and Modification of a Habitat Suitability Model for Pronghorns, Wildlife Society Bulletin, 13: 440-448.
  102. 55. del Hoyo, J., Sargatal, J., & Elliot, A., 1994, Handbook of the Birds of the World, Vol. 1., Lynx Edicions, Barcelona, Spain.
  103. 57. Elmberg, J., Nummi, P., Poysa, H., Gunnarsson, G., & Sjoberg, K., 2005, Early breeders use the best lakes and have higher reproductive success in Teal Anas crecca, Annales Zoologici Fennici, 42: 37-43.
  104. 60. Froneman, A., Mangnall, M.J., Little, R.M., & Crowe, T.M., 2001, Waterbird assemblages and associated habitat characteristics of farm ponds in the Western Cape, South Africa, Biodiversity and Conservation, 10: 251-270.
  105. 66. Guillemain, M., Fritz, H, & Duncan, P., 2002, Foraging strategies of granivorous dabbling ducks wintering in protected areas of the French Atlantic coast, Biodiversity and Conservation, 11: 1721-1732.
  106. 69. Howard, R.J., & Kantrud, H.A., 1986, Habitat suitability index models: northern pintail (Gulf coast wintering), U.S. Fish & Wildlife service.
  107. 71. Isola, C.R., Colwell, M.A., Taft, O.W., & Safran, R.J., 2000, Interspecific differences in habitat use of shorebirds and waterfowl foraging in managed wetlands of California’s San Joaquin Valley, International Journal of Waterbird Biology, 23: 196-203.
  108. 75. Kandiah, A., 1974, Fundamental aspects of surface erosion of cohesive soils, PhD thesis, University of California, Davis, California.
  109. 78. Kouwen, N., & Li, R.M., 1980, Biomechanics of vegetative channel linings, Journal of Hydraulics Division, ASCE, 106: 1085-1103.
  110. 82. Leberg, P., 2012, Louisiana’s Comprehensive Master Plan for a Sustainable Coast, Appendix D‐8 green‐winged teal habitat suitability index technical report, Coastal Protection and Restoration Authority of Louisiana, Baton Rouge, LA.
  111. 83. Li, Z.W.D., Bloem, A., Delany, S., Martakis, G., & Quintero, J.O., 2009, Status of Waterbirds in Asia - Results of the Asian Waterbird Census: 1987-2007, Wetlands International, Kuala Lumpur, Malaysia.
  112. 84. Liao S., 2001, Impact bird Areas in Taiwan. Published by Wild Bird Federaiton in Taiwan, Taipei, Taiwan.
  113. 89. Migniot, C., 1968, A study of the physical properties on different fine sediments and their behavior under hydrodynamic action, La Houille Blanche, 7: 591-620. (in French with English abstract)
  114. 90. Migniot, C., 1989, Bedding-down and rheology of muds, Part I, La Houille Blanche, 1: 11-29. (in French)
  115. 96. Paulus, S.L., 1988, Time–activity budgets of nonbreeding Anatidae: a review, In: Weller M.W. (ed.), Waterfowl in Winter, University of Minnesota Press, Minneapolis, Minnesota.
  116. 101. Rittenhouse, C.D., Dijak, W.D., Thompson F.R.III, & Millspaugh, J.J., 2007, Development of landscape-level habitat suitability models for ten wildlife species in the Central Hardwoods Region, U.S. Department of Agriculture, Forest Service General Technical Report NRS-4, Northern Research Station, Newtown Square, Pennsylvania, USA.
  117. 102. Roloff, G.J., & Kernohan, B.J., 1999, Evaluating reliability of habitat suitability index models, Wildlife Society Bulletin, 27:973–985.
  118. 103. Rosgen, D.L., 1996, Applied river morphology. Wildland Hydrology, Colorado.
  119. 104. SAS Institute, 2003, SAS user’s guide: statistics, release 9.1., SAS Institute, Cary, NC.
  120. 105. Schroeder, R.L., Cable, T.T., & Haire, S.L., 1992, Wildlife species richness in shelterbelts: test of a habitat model, Wildlife Society Bulletin, 20:264-273.
  121. 106. Spasojevic, M., & Holly, F.M.Jr., 2007, Sedimentation engineering: processes, management, and practice, edited by Marcelo H. Garcia, prepared by the ASCE task committee to expand and update manual 54 of the sedimentation committee of the environmental and water resources institute (ASCE manuals and reports on engineering practice; no. 110), Chapter 15.
  122. 107. Stauffer, D.F., 2002, Linking populations and habitats: where have we been? Where are we going? Pages 53–61 in Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A., Samson, F.B., editors. Predicting species occurrences: issues of accuracy and scale, Island Press, Washington, D.C., USA.
  123. 120. VanHorne, B., & Wiens, J.A., 1991, Forest bird habitat suitability models and the development of general habitat models, Department of the Interior, U.S. Fish and Wildlife Service Fish and Wildlife Research 8, Washington, D.C., USA.
  124. 121. Van Winkle, W., Coutant, C.C., Jager, H.I., Matticre, J.S., Orth, D.J., Otto, R.G., Railsback, S.F., & Sale, M.J., 1997, Uncertainty and instream flow standards; perspectives based on hydropower research and assessment, Fisheries ,22(7), 21-22.
  125. 125. WWF Hong Kong, 2006, Management Plan for the Mai Po Nature Reserve, WWF Hong Kong, Hong Kong.
Times Cited
  1. 曾威捷(2015)。以小水鴨(Anas crecca)分布探討華江濕地棲地改善工程的影響。臺灣大學生態學與演化生物學研究所學位論文。2015。1-42。 
  2. 羅暐菱(2014)。宜蘭縣無尾港地區小水鴨度冬棲地特性。臺灣大學森林環境暨資源學研究所學位論文。2014。1-65。 
  3. 王澤琳(2015)。淡水河支流疏濬對棲地影響之研究。逢甲大學水利工程與資源保育學系學位論文。2015。1-111。 
  4. 陳彤昀(2016)。臺灣產招潮蟹的棲地適合度指標模式及棲地特徵對其洞穴發展之影響。中興大學生命科學系所學位論文。2016。1-139。